The initial boundary value problem for the two-dimensional primitive equations of large scale oceanic motion in geophysics is considered. It is assumed that the depth of the ocean is a positive constant. Firstly, if t...The initial boundary value problem for the two-dimensional primitive equations of large scale oceanic motion in geophysics is considered. It is assumed that the depth of the ocean is a positive constant. Firstly, if the initial data are square integrable, then by Fadeo-Galerkin method, the existence of the global weak solutions for the problem is obtained. Secondly, if the initial data and their vertical derivatives are all square integrable, then by Faedo-Galerkin method and anisotropic inequalities, the existerce and uniqueness of the global weakly strong solution for the above initial boundary problem are obtained.展开更多
基金Project supported by the National Natural Science Foundation of China (No.90511009)
文摘The initial boundary value problem for the two-dimensional primitive equations of large scale oceanic motion in geophysics is considered. It is assumed that the depth of the ocean is a positive constant. Firstly, if the initial data are square integrable, then by Fadeo-Galerkin method, the existence of the global weak solutions for the problem is obtained. Secondly, if the initial data and their vertical derivatives are all square integrable, then by Faedo-Galerkin method and anisotropic inequalities, the existerce and uniqueness of the global weakly strong solution for the above initial boundary problem are obtained.