In this article, we prove the global existence of weak solutions to the non- isothermal nematic liquid crystal system on T2, on the basis of a new approximate system which is different from the classical Ginzburg-Land...In this article, we prove the global existence of weak solutions to the non- isothermal nematic liquid crystal system on T2, on the basis of a new approximate system which is different from the classical Ginzburg-Landau approximation. Local in space energy inequalities are employed to recover the estimates on the second order spatial derivatives of the director fields locally in time, which cannot be derived from the basic energy balance. It is shown that these weak solutions satisfy the temperature equation, and also the total energy equation but away from at most finite many "singular" times, at which the energy concentration occurs and the director field losses its second order derivatives.展开更多
In this paper, we study the problem of boundary layer for nonstationary flows of viscous incompressible fluids. There are some open problems in the field of boundary layer. The method used here is mainly based on a tr...In this paper, we study the problem of boundary layer for nonstationary flows of viscous incompressible fluids. There are some open problems in the field of boundary layer. The method used here is mainly based on a transformation which reduces the boundary layer system to an initial-boundary value problem for a single quasilinear parabolic equation. We prove the existence of weak solutions to the modified nonstationary boundary layer system. Moreover, the stability and uniqueness of weak solutions are discussed.展开更多
In this paper we consider the system of classical particles coupled with a Klein-Gordon field in two dimensions. We establish a-priori-bounds on the solutions of this system with initial data satisfying a size restric...In this paper we consider the system of classical particles coupled with a Klein-Gordon field in two dimensions. We establish a-priori-bounds on the solutions of this system with initial data satisfying a size restriction derived from conservation of energy. This result, together with the smoothing of "velocity averaging", yields the existence of global weak solutions to the corresponding restricted initial value problem. The size restriction is necessary since energy of the system is indefinite. Finally, we show that the weak solutions preserve the total mass.展开更多
We study the existence problem for the equations of first order quasilinearequations in several inpendent variables with singular initial data Lp(P<∞). We the convergence of the Lp(P<∞) bounded approximating s...We study the existence problem for the equations of first order quasilinearequations in several inpendent variables with singular initial data Lp(P<∞). We the convergence of the Lp(P<∞) bounded approximating sequences generatedby the method of vanishing viscosity. The uniqueness of the generalized solutions whichcan be obtained by the method of vanishing viscosity is also obtained.展开更多
This paper is concerned with the initial-boundary value problem of scalar conservation laws with weak discontinuous flux, whose initial data are a function with two pieces of constant and whose boundary data are a con...This paper is concerned with the initial-boundary value problem of scalar conservation laws with weak discontinuous flux, whose initial data are a function with two pieces of constant and whose boundary data are a constant function. Under the condition that the flux function has a finite number of weak discontinuous points, by using the structure of weak entropy solution of the corresponding initial value problem and the boundary entropy condition developed by Bardos-Leroux-Nedelec, we give a construction method to the global weak entropy solution for this initial-boundary value problem, and by investigating the interaction of elementary waves and the boundary, we clarify the geometric structure and the behavior of boundary for the weak entropy solution.展开更多
This paper is concerned with the initial-boundary value problem of a nonlinear conservation law in the half space R+= {x |x > 0} where a>0 , u(x,t) is an unknown function of x ∈ R+ and t>0 , u ± , um ar...This paper is concerned with the initial-boundary value problem of a nonlinear conservation law in the half space R+= {x |x > 0} where a>0 , u(x,t) is an unknown function of x ∈ R+ and t>0 , u ± , um are three given constants satisfying um=u+≠u- or um=u-≠u+ , and the flux function f is a given continuous function with a weak discontinuous point ud. The main purpose of our present manuscript is devoted to studying the structure of the global weak entropy solution for the above initial-boundary value problem under the condition of f '-(ud) > f '+(ud). By the characteristic method and the truncation method, we construct the global weak entropy solution of this initial-boundary value problem, and investigate the interaction of elementary waves with the boundary and the boundary behavior of the weak entropy solution.展开更多
基金Hong Kong RGC Earmarked Research Grants 14305315,CUHK4041/11P and CUHK4048/13PThe Chinese University of Hong Kong,a Croucher Foundation-CAS Joint Grant,and a NSFC/RGC Joint Research Scheme(N-CUHK443/14)
文摘In this article, we prove the global existence of weak solutions to the non- isothermal nematic liquid crystal system on T2, on the basis of a new approximate system which is different from the classical Ginzburg-Landau approximation. Local in space energy inequalities are employed to recover the estimates on the second order spatial derivatives of the director fields locally in time, which cannot be derived from the basic energy balance. It is shown that these weak solutions satisfy the temperature equation, and also the total energy equation but away from at most finite many "singular" times, at which the energy concentration occurs and the director field losses its second order derivatives.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 10131050).
文摘In this paper, we study the problem of boundary layer for nonstationary flows of viscous incompressible fluids. There are some open problems in the field of boundary layer. The method used here is mainly based on a transformation which reduces the boundary layer system to an initial-boundary value problem for a single quasilinear parabolic equation. We prove the existence of weak solutions to the modified nonstationary boundary layer system. Moreover, the stability and uniqueness of weak solutions are discussed.
文摘In this paper we consider the system of classical particles coupled with a Klein-Gordon field in two dimensions. We establish a-priori-bounds on the solutions of this system with initial data satisfying a size restriction derived from conservation of energy. This result, together with the smoothing of "velocity averaging", yields the existence of global weak solutions to the corresponding restricted initial value problem. The size restriction is necessary since energy of the system is indefinite. Finally, we show that the weak solutions preserve the total mass.
文摘We study the existence problem for the equations of first order quasilinearequations in several inpendent variables with singular initial data Lp(P<∞). We the convergence of the Lp(P<∞) bounded approximating sequences generatedby the method of vanishing viscosity. The uniqueness of the generalized solutions whichcan be obtained by the method of vanishing viscosity is also obtained.
文摘This paper is concerned with the initial-boundary value problem of scalar conservation laws with weak discontinuous flux, whose initial data are a function with two pieces of constant and whose boundary data are a constant function. Under the condition that the flux function has a finite number of weak discontinuous points, by using the structure of weak entropy solution of the corresponding initial value problem and the boundary entropy condition developed by Bardos-Leroux-Nedelec, we give a construction method to the global weak entropy solution for this initial-boundary value problem, and by investigating the interaction of elementary waves and the boundary, we clarify the geometric structure and the behavior of boundary for the weak entropy solution.
文摘This paper is concerned with the initial-boundary value problem of a nonlinear conservation law in the half space R+= {x |x > 0} where a>0 , u(x,t) is an unknown function of x ∈ R+ and t>0 , u ± , um are three given constants satisfying um=u+≠u- or um=u-≠u+ , and the flux function f is a given continuous function with a weak discontinuous point ud. The main purpose of our present manuscript is devoted to studying the structure of the global weak entropy solution for the above initial-boundary value problem under the condition of f '-(ud) > f '+(ud). By the characteristic method and the truncation method, we construct the global weak entropy solution of this initial-boundary value problem, and investigate the interaction of elementary waves with the boundary and the boundary behavior of the weak entropy solution.