The Paraconsistent Many-Valued Similarity (PMVS) method for multi-attribute decision making will be incomplete as a decision model if it is not extended to the realm of group decision-making. Therefore, in this articl...The Paraconsistent Many-Valued Similarity (PMVS) method for multi-attribute decision making will be incomplete as a decision model if it is not extended to the realm of group decision-making. Therefore, in this article, our primary objective is to show how the paraconsistent many-valued similarity method can be used to solve group decision-making problems involving choice making or ranking of a finite set of decision alternatives. Moreover, since weights are very important parameters in multi-attribute decision-making, we have introduced the Borda rule to calculate the weights of experts and that of every criterion under consideration. To demonstrate how the proposed method works, a numerical example on energy sources of an economy from the points of view of a group of experts is investigated. Further, we compare the results of this new approach with that of fuzzy TOPSIS group decision-making method to illustrate the robustness and effectiveness of the former.展开更多
Global strength is a significant item for floating production storage and offloading(FPSO) design, and steel weight plays an important role in the building costs of FPSO. It is the main task to consider and combine th...Global strength is a significant item for floating production storage and offloading(FPSO) design, and steel weight plays an important role in the building costs of FPSO. It is the main task to consider and combine these two aspects by optimizing hull dimensions. There are many optional methods for the global strength analysis. A common method is to use the ABS FPSO Eagle software to analyze the global strength including the rule check and direct strength analysis. And the same method can be adopted for the FPSO hull optimization by changing the depth. After calculation and optimization, the results are compared and analyzed. The results can be used as a reference for the future design or quotation purpose.展开更多
超大型海上浮式结构物(very large floating structures,VLFS)由多个模块组成,单模块结构强度是研究超大型海上浮式结构物强度的基础,因此,有必要对超大型浮体单模块在典型波浪载荷下进行强度分析.首先根据挪威船级社(DNV)海上浮式结构...超大型海上浮式结构物(very large floating structures,VLFS)由多个模块组成,单模块结构强度是研究超大型海上浮式结构物强度的基础,因此,有必要对超大型浮体单模块在典型波浪载荷下进行强度分析.首先根据挪威船级社(DNV)海上浮式结构物强度分析的相关规范,考虑该超大型海上浮式结构物单模块下浮体横向设置的特点,选取了纵向分离、纵向扭转、横向剪切和垂向弯曲4种典型波浪载荷工况;然后采用SESAM有限元分析软件,对波浪载荷进行长期预报;最后基于有限元直接计算方法对超大型海上浮式结构物单模块在4种典型工况下的强度进行计算,分析得到结构整体应力水平分布均匀,但存在上箱体和立柱连接处部位、下浮体和立柱连接处、撑杆几何尺寸变化3处高应力区的相关结论,为超大型海上浮式结构物的结构设计提供了相关理论依据.展开更多
文摘The Paraconsistent Many-Valued Similarity (PMVS) method for multi-attribute decision making will be incomplete as a decision model if it is not extended to the realm of group decision-making. Therefore, in this article, our primary objective is to show how the paraconsistent many-valued similarity method can be used to solve group decision-making problems involving choice making or ranking of a finite set of decision alternatives. Moreover, since weights are very important parameters in multi-attribute decision-making, we have introduced the Borda rule to calculate the weights of experts and that of every criterion under consideration. To demonstrate how the proposed method works, a numerical example on energy sources of an economy from the points of view of a group of experts is investigated. Further, we compare the results of this new approach with that of fuzzy TOPSIS group decision-making method to illustrate the robustness and effectiveness of the former.
基金the sponsors of this project: American Bureau of Shipping
文摘Global strength is a significant item for floating production storage and offloading(FPSO) design, and steel weight plays an important role in the building costs of FPSO. It is the main task to consider and combine these two aspects by optimizing hull dimensions. There are many optional methods for the global strength analysis. A common method is to use the ABS FPSO Eagle software to analyze the global strength including the rule check and direct strength analysis. And the same method can be adopted for the FPSO hull optimization by changing the depth. After calculation and optimization, the results are compared and analyzed. The results can be used as a reference for the future design or quotation purpose.
文摘超大型海上浮式结构物(very large floating structures,VLFS)由多个模块组成,单模块结构强度是研究超大型海上浮式结构物强度的基础,因此,有必要对超大型浮体单模块在典型波浪载荷下进行强度分析.首先根据挪威船级社(DNV)海上浮式结构物强度分析的相关规范,考虑该超大型海上浮式结构物单模块下浮体横向设置的特点,选取了纵向分离、纵向扭转、横向剪切和垂向弯曲4种典型波浪载荷工况;然后采用SESAM有限元分析软件,对波浪载荷进行长期预报;最后基于有限元直接计算方法对超大型海上浮式结构物单模块在4种典型工况下的强度进行计算,分析得到结构整体应力水平分布均匀,但存在上箱体和立柱连接处部位、下浮体和立柱连接处、撑杆几何尺寸变化3处高应力区的相关结论,为超大型海上浮式结构物的结构设计提供了相关理论依据.