期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
支持向量机与最小二乘法的关系研究
被引量:
60
1
作者
阎辉
张学工
李衍达
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2001年第9期77-80,共4页
研究了支持向量机 (SVM)在二次损失函数下的优化问题解的形式 ,并与普通的最小二乘 (L S)估计问题进行了比较 ,得到了几乎完全一致的优化问题形式。由于 SVM在二次损失函数下的优化问题对应于一个欠定问题 ,该问题在最小二乘估计中有最...
研究了支持向量机 (SVM)在二次损失函数下的优化问题解的形式 ,并与普通的最小二乘 (L S)估计问题进行了比较 ,得到了几乎完全一致的优化问题形式。由于 SVM在二次损失函数下的优化问题对应于一个欠定问题 ,该问题在最小二乘估计中有最小范数解。如果 SVM的参数选择合适 ,从理论上可以证明采用二次损失函数的 SVM函数拟合问题实际为约束最小二乘估计问题 ,并且该问题的解对应于最小范数最小二乘解。由于最小化范数解实际是 SVM在取某些参数时的一个特例 ,如果能够自动调整这些参数 ,则得到一类最小化范数解。由此提出了采用 SVM解决最小二乘法问题的思想 ,由于 SVM的优点 。
展开更多
关键词
支持向量机
最优分类面
最小二乘估计
最小范数解
统计学习理论
原文传递
题名
支持向量机与最小二乘法的关系研究
被引量:
60
1
作者
阎辉
张学工
李衍达
机构
清华大学自动化系
出处
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2001年第9期77-80,共4页
基金
国家自然科学基金资助项目 ( 6 9885 0 0 4)
文摘
研究了支持向量机 (SVM)在二次损失函数下的优化问题解的形式 ,并与普通的最小二乘 (L S)估计问题进行了比较 ,得到了几乎完全一致的优化问题形式。由于 SVM在二次损失函数下的优化问题对应于一个欠定问题 ,该问题在最小二乘估计中有最小范数解。如果 SVM的参数选择合适 ,从理论上可以证明采用二次损失函数的 SVM函数拟合问题实际为约束最小二乘估计问题 ,并且该问题的解对应于最小范数最小二乘解。由于最小化范数解实际是 SVM在取某些参数时的一个特例 ,如果能够自动调整这些参数 ,则得到一类最小化范数解。由此提出了采用 SVM解决最小二乘法问题的思想 ,由于 SVM的优点 。
关键词
支持向量机
最优分类面
最小二乘估计
最小范数解
统计学习理论
Keywords
support
vector
machine
global
optimal
separating
hyperplane
least
square
estimation
minimal
norm
solution
分类号
TP18 [自动化与计算机技术—控制理论与控制工程]
原文传递
题名
作者
出处
发文年
被引量
操作
1
支持向量机与最小二乘法的关系研究
阎辉
张学工
李衍达
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2001
60
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部