分析复杂光照条件下旁路二极管的接入对串联光伏阵列输出特性的影响,根据单个光伏模块的数学模型,导出复杂光照条件下串联光伏阵列的数学模型;通过对各种光照条件下串联光伏阵列输出特性的分析研究,总结U-I曲线中呈现恒流源特性的电压...分析复杂光照条件下旁路二极管的接入对串联光伏阵列输出特性的影响,根据单个光伏模块的数学模型,导出复杂光照条件下串联光伏阵列的数学模型;通过对各种光照条件下串联光伏阵列输出特性的分析研究,总结U-I曲线中呈现恒流源特性的电压区间与不同光照之间存在的关系,提出一种在复杂光照条件下快速追踪串联光伏阵列最大功率点(maximum power point,MPP)的算法,算法能够在复杂光照导致的多个MPP中确定全局最大功率点(global maximum power point,GMPP)。仿真表明,提出的算法能够识别阵列是否处于复杂光照情况下并快速追踪到GMPP。展开更多
老化、温度变化和局部阴影等引起的电池电气特性不同,使光伏阵列P-U曲线出现多个功率峰值点。大容量光伏阵列组件数多,其多峰值问题比小容量光伏阵列更常见和复杂。该文首先根据局部阴影条件下光伏阵列分段函数型输出特性,建立其S函数...老化、温度变化和局部阴影等引起的电池电气特性不同,使光伏阵列P-U曲线出现多个功率峰值点。大容量光伏阵列组件数多,其多峰值问题比小容量光伏阵列更常见和复杂。该文首先根据局部阴影条件下光伏阵列分段函数型输出特性,建立其S函数模型。然后提出免疫细菌觅食算法,实现大容量光伏阵列全局最大功率点跟踪(global maximum power point tracking,GMPPT),利用细菌觅食算法的随机选取方向特性和免疫选择算子,实现时变环境下全局最大功率点的动态跟踪,将所有跟踪到的全局最大功率点保存到全局最大功率点记忆池,再利用全局最大功率点记忆池初始化群体和产生迁移个体新位置,加快重复出现全局最大功率点的跟踪速度。仿真结果表明,免疫细菌觅食算法在动态和重复出现局部阴影条件下都有良好的GMPPT跟踪定位能力。展开更多
文摘分析复杂光照条件下旁路二极管的接入对串联光伏阵列输出特性的影响,根据单个光伏模块的数学模型,导出复杂光照条件下串联光伏阵列的数学模型;通过对各种光照条件下串联光伏阵列输出特性的分析研究,总结U-I曲线中呈现恒流源特性的电压区间与不同光照之间存在的关系,提出一种在复杂光照条件下快速追踪串联光伏阵列最大功率点(maximum power point,MPP)的算法,算法能够在复杂光照导致的多个MPP中确定全局最大功率点(global maximum power point,GMPP)。仿真表明,提出的算法能够识别阵列是否处于复杂光照情况下并快速追踪到GMPP。
文摘老化、温度变化和局部阴影等引起的电池电气特性不同,使光伏阵列P-U曲线出现多个功率峰值点。大容量光伏阵列组件数多,其多峰值问题比小容量光伏阵列更常见和复杂。该文首先根据局部阴影条件下光伏阵列分段函数型输出特性,建立其S函数模型。然后提出免疫细菌觅食算法,实现大容量光伏阵列全局最大功率点跟踪(global maximum power point tracking,GMPPT),利用细菌觅食算法的随机选取方向特性和免疫选择算子,实现时变环境下全局最大功率点的动态跟踪,将所有跟踪到的全局最大功率点保存到全局最大功率点记忆池,再利用全局最大功率点记忆池初始化群体和产生迁移个体新位置,加快重复出现全局最大功率点的跟踪速度。仿真结果表明,免疫细菌觅食算法在动态和重复出现局部阴影条件下都有良好的GMPPT跟踪定位能力。