The solar radiation that hits the Earth conditions the dynamic equilibrium that prevails on our planet. Consideration of basic physical-chemical knowledge shows that this equilibrium can be changed only by additional ...The solar radiation that hits the Earth conditions the dynamic equilibrium that prevails on our planet. Consideration of basic physical-chemical knowledge shows that this equilibrium can be changed only by additional energy input or prolongation of the interaction time solar radiation—Earth matter. The contribution of H<sub>2</sub>O(g) and CO<sub>2</sub> to the protection of the earth against excessive warming is experimentally and by basic laws of nature secured. For a greenhouse effect, a part of the earth radiation must be radiated back to the earth and then into space. If one understands the earth radiation as radiation of a black body with the average global environmental temperature, from all vibrations normal modes of the gases H<sub>2</sub>O(g) and CO<sub>2</sub> only the bending mode of CO<sub>2</sub> with 4% of the solar constant can contribute beside the rotational modes of the water to the greenhouse effect. The contributions of the normal modes of H<sub>2</sub>O(g) and CO<sub>2</sub> to the heat capacity of the atmosphere are negligible. Therefore, in agreement with studies by K. Ångström, CO<sub>2</sub> contributes only to the stabilization of the global environmental temperature. Whether the use of renewable energies can actually at least mitigate the increase of the environmental temperature is by no means certain but must be examined for each individual case. With certainty, this goal can only be achieved by reducing the energy consumption of mankind.展开更多
An optimization model is constructed to formulate the maximization problem on the capacity of V-belt drive. The concavity,the monotonicity and the global optimality condition are studied for the objective function,and...An optimization model is constructed to formulate the maximization problem on the capacity of V-belt drive. The concavity,the monotonicity and the global optimality condition are studied for the objective function,and it is proved that the feasible region of the model is bounded,closed and convex under some design conditions. Then,a solution method,called an optimal segment algorithm,is developed to find the global maximizer of the model. Under four different design conditions,solution methods are presented respectively. Some real case studies are employed to demonstrate that the model and the algorithm in this paper are promising.展开更多
Global change determines the environmental condition and leads to decide the carrying capacity. While carrying capacity determines the extinction of the species, it is an important issue to estimate the extinction poi...Global change determines the environmental condition and leads to decide the carrying capacity. While carrying capacity determines the extinction of the species, it is an important issue to estimate the extinction point of the species, the minimal carrying capacity, or the tolerant limitation of the species. If it is possible to estimate the tolerant limitation of the species, it will be possible to control the global change. Applied the above idea to the albacore stocks, it revealed that extinction point was about 0.0018% of the present status. From these results, it implies that this method may also suitable to other species for estimating their carrying capacities.展开更多
文摘The solar radiation that hits the Earth conditions the dynamic equilibrium that prevails on our planet. Consideration of basic physical-chemical knowledge shows that this equilibrium can be changed only by additional energy input or prolongation of the interaction time solar radiation—Earth matter. The contribution of H<sub>2</sub>O(g) and CO<sub>2</sub> to the protection of the earth against excessive warming is experimentally and by basic laws of nature secured. For a greenhouse effect, a part of the earth radiation must be radiated back to the earth and then into space. If one understands the earth radiation as radiation of a black body with the average global environmental temperature, from all vibrations normal modes of the gases H<sub>2</sub>O(g) and CO<sub>2</sub> only the bending mode of CO<sub>2</sub> with 4% of the solar constant can contribute beside the rotational modes of the water to the greenhouse effect. The contributions of the normal modes of H<sub>2</sub>O(g) and CO<sub>2</sub> to the heat capacity of the atmosphere are negligible. Therefore, in agreement with studies by K. Ångström, CO<sub>2</sub> contributes only to the stabilization of the global environmental temperature. Whether the use of renewable energies can actually at least mitigate the increase of the environmental temperature is by no means certain but must be examined for each individual case. With certainty, this goal can only be achieved by reducing the energy consumption of mankind.
基金supported by the National Natural Science Foundation of China (Grant Nos.71071162,70921001)the project for Excellent Talent of New Century,Ministry of Education of China (Grant No.NCET-07-0864)
文摘An optimization model is constructed to formulate the maximization problem on the capacity of V-belt drive. The concavity,the monotonicity and the global optimality condition are studied for the objective function,and it is proved that the feasible region of the model is bounded,closed and convex under some design conditions. Then,a solution method,called an optimal segment algorithm,is developed to find the global maximizer of the model. Under four different design conditions,solution methods are presented respectively. Some real case studies are employed to demonstrate that the model and the algorithm in this paper are promising.
文摘Global change determines the environmental condition and leads to decide the carrying capacity. While carrying capacity determines the extinction of the species, it is an important issue to estimate the extinction point of the species, the minimal carrying capacity, or the tolerant limitation of the species. If it is possible to estimate the tolerant limitation of the species, it will be possible to control the global change. Applied the above idea to the albacore stocks, it revealed that extinction point was about 0.0018% of the present status. From these results, it implies that this method may also suitable to other species for estimating their carrying capacities.