In this paper, we study the longtime behavior of solution to the initial boundary value problem for a class of strongly damped Higher-order Kirchhoff type equations: . At first, we prove the existence and uniqueness o...In this paper, we study the longtime behavior of solution to the initial boundary value problem for a class of strongly damped Higher-order Kirchhoff type equations: . At first, we prove the existence and uniqueness of the solution by priori estimation and the Galerkin method. Then, we obtain to the existence of the global attractor. At last, we consider that the estimation of the upper bounds of Hausdorff and fractal dimensions for the global attractors are obtained.展开更多
We investigate the global well-posedness and the global attractors of the solutions for the Higher-order Kirchhoff-type wave equation with nonlinear strongly damping: . For strong nonlinear damping σ and ?, we make a...We investigate the global well-posedness and the global attractors of the solutions for the Higher-order Kirchhoff-type wave equation with nonlinear strongly damping: . For strong nonlinear damping σ and ?, we make assumptions (H<sub>1</sub>) - (H<sub>4</sub>). Under of the proper assume, the main results are existence and uniqueness of the solution in proved by Galerkin method, and deal with the global attractors.展开更多
The long time behavior of solutions of the generalized Hasegawa-Mima equation with dissipation term is considered. The existence of global attractors of the periodic initial value problem is proved, and the estimate o...The long time behavior of solutions of the generalized Hasegawa-Mima equation with dissipation term is considered. The existence of global attractors of the periodic initial value problem is proved, and the estimate of the upper bound of the Hausdorff and fractal dimensions for the global attractors is obtained by means of uniform a priori estimates method.展开更多
In this paper, we consider a class of generalized nonlinear Kirchhoff-Sine-Gordon equation . By a priori estimation, we first prove the existence and uniqueness of solutions to the initial boundary value conditio...In this paper, we consider a class of generalized nonlinear Kirchhoff-Sine-Gordon equation . By a priori estimation, we first prove the existence and uniqueness of solutions to the initial boundary value conditions, and then we study the global attractors of the equation.展开更多
文摘In this paper, we study the longtime behavior of solution to the initial boundary value problem for a class of strongly damped Higher-order Kirchhoff type equations: . At first, we prove the existence and uniqueness of the solution by priori estimation and the Galerkin method. Then, we obtain to the existence of the global attractor. At last, we consider that the estimation of the upper bounds of Hausdorff and fractal dimensions for the global attractors are obtained.
文摘We investigate the global well-posedness and the global attractors of the solutions for the Higher-order Kirchhoff-type wave equation with nonlinear strongly damping: . For strong nonlinear damping σ and ?, we make assumptions (H<sub>1</sub>) - (H<sub>4</sub>). Under of the proper assume, the main results are existence and uniqueness of the solution in proved by Galerkin method, and deal with the global attractors.
基金Supported by the Natural Science Foundation of Henan Education Department (No.2007110004) Supported by the Natural Science Foundation of Henan University (No.06YBZR027).
文摘The long time behavior of solutions of the generalized Hasegawa-Mima equation with dissipation term is considered. The existence of global attractors of the periodic initial value problem is proved, and the estimate of the upper bound of the Hausdorff and fractal dimensions for the global attractors is obtained by means of uniform a priori estimates method.
文摘In this paper, we consider a class of generalized nonlinear Kirchhoff-Sine-Gordon equation . By a priori estimation, we first prove the existence and uniqueness of solutions to the initial boundary value conditions, and then we study the global attractors of the equation.