On-chip spectroscopic sensors have attracted increasing attention for portable and field-deployable chemical detection applications. So far, these sensors largely rely on benchtop tunable lasers for spectroscopic inte...On-chip spectroscopic sensors have attracted increasing attention for portable and field-deployable chemical detection applications. So far, these sensors largely rely on benchtop tunable lasers for spectroscopic interrogation. Large footprint and mechanical fragility of the sources, however, preclude compact sensing system integration. In this paper, we address the challenge through demonstrating, for the first time to our knowledge, a supercontinuum source integrated on-chip spectroscopic sensor, where we leverage nonlinear Ge_(22)Sb_(18)Se_(60) chalcogenide glass waveguides as a unified platform for both broadband supercontinuum generation and chemical detection. A home-built, palm-sized femtosecond laser centering at 1560 nm wavelength was used as the pumping source. Sensing capability of the system was validated through quantifying the optical absorption of chloroform solutions at 1695 nm. This work represents an important step towards realizing a miniaturized spectroscopic sensing system based on photonic chips.展开更多
In this paper we report an experimental investigation on the observation of surface plasmon resonance at the metal- dielectric interface of silver coated tapered light guiding glass rods of different dimensions. Chemi...In this paper we report an experimental investigation on the observation of surface plasmon resonance at the metal- dielectric interface of silver coated tapered light guiding glass rods of different dimensions. Chemical deposition technique has been used for metallic deposition of silver on the Tapered glass rod. Angular interrogation in Kretschmann- like configuration of this non-planar (cylindrical) structure is used to locate the resonance dip in the reflectance mea- surement. Fabrication simplicity, in addition to the inherent advantage of using different types of tapered structures, makes this study important in the development of nanoplasmonics. The experimental study is accompanied by some interesting results.展开更多
基金National Science Foundation(NSF)(6937070)Defense Threat Reduction Agency(DTRA)(HDTRA1-13-1-0001)+1 种基金National Natural Science Foundation of China(NSFC)(61475129)Natural Science Foundation of Fujian Province,China(2017J06016)
文摘On-chip spectroscopic sensors have attracted increasing attention for portable and field-deployable chemical detection applications. So far, these sensors largely rely on benchtop tunable lasers for spectroscopic interrogation. Large footprint and mechanical fragility of the sources, however, preclude compact sensing system integration. In this paper, we address the challenge through demonstrating, for the first time to our knowledge, a supercontinuum source integrated on-chip spectroscopic sensor, where we leverage nonlinear Ge_(22)Sb_(18)Se_(60) chalcogenide glass waveguides as a unified platform for both broadband supercontinuum generation and chemical detection. A home-built, palm-sized femtosecond laser centering at 1560 nm wavelength was used as the pumping source. Sensing capability of the system was validated through quantifying the optical absorption of chloroform solutions at 1695 nm. This work represents an important step towards realizing a miniaturized spectroscopic sensing system based on photonic chips.
文摘In this paper we report an experimental investigation on the observation of surface plasmon resonance at the metal- dielectric interface of silver coated tapered light guiding glass rods of different dimensions. Chemical deposition technique has been used for metallic deposition of silver on the Tapered glass rod. Angular interrogation in Kretschmann- like configuration of this non-planar (cylindrical) structure is used to locate the resonance dip in the reflectance mea- surement. Fabrication simplicity, in addition to the inherent advantage of using different types of tapered structures, makes this study important in the development of nanoplasmonics. The experimental study is accompanied by some interesting results.