期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
氟化焙烧预处理提取低品位锗精矿中锗的工艺研究 被引量:2
1
作者 李长林 杨再磊 +5 位作者 谢高 薛丹 窦辉 张弦 滕文 普世坤 《稀有金属与硬质合金》 CSCD 北大核心 2017年第5期22-26,共5页
为提高低品位Ge精矿中Ge提取率,采用氟化物焙烧预处理,通过单因素优化实验和正交实验考察了氟化物用量、焙烧温度、焙烧时间对Ge提取率的影响。结果表明,NaF用量和焙烧温度对Ge提取率的影响较大,焙烧时间则不宜过长。在NaF添加量与Ge精... 为提高低品位Ge精矿中Ge提取率,采用氟化物焙烧预处理,通过单因素优化实验和正交实验考察了氟化物用量、焙烧温度、焙烧时间对Ge提取率的影响。结果表明,NaF用量和焙烧温度对Ge提取率的影响较大,焙烧时间则不宜过长。在NaF添加量与Ge精矿质量比1∶1、焙烧温度800℃、焙烧时间2h的预处理条件下,Ge提取率最高,达到99.16%。该方法同样适用于氯化蒸馏残渣中Ge的回收,Ge回收率达91.58%,大幅降低了残渣中的Ge含量。提取过程无HF气体生成,对设备要求低,操作简单,环境友好。 展开更多
关键词 Ge精矿 Ge提取 氟化焙烧 氯化蒸馏 NAF
下载PDF
某锗提取项目职业病危害识别及关键控制点分析
2
作者 王凯东 徐晓荣 《中国卫生工程学》 CAS 2010年第6期428-429,436,共3页
目的识别、分析和评价某锗业公司锗提取项目产生的职业病危害因素及其危害程度,分析职业病危害的关键控制点,并提出合理可行的职业病防护对策。方法通过现场调查和工程分析,识别生产过程中存在的职业病危害因素的种类及环节,并进行检测... 目的识别、分析和评价某锗业公司锗提取项目产生的职业病危害因素及其危害程度,分析职业病危害的关键控制点,并提出合理可行的职业病防护对策。方法通过现场调查和工程分析,识别生产过程中存在的职业病危害因素的种类及环节,并进行检测。结果该公司生产过程中产生的主要职业病危害因素为有毒物质(氮氧化物、二氧化硫、一氧化碳、氨、盐酸)、粉尘(煤尘、矽尘)、物理因素(噪声、高温)。经现场检测,有毒物质合格率为92.8%、粉尘合格率为73.3%、噪声合格率为100.0%、高温合格率为100.0%。结论该项目粉尘危害的关键控制点为炉渣口、炉顶、电除尘卸灰间、除尘沉降室;毒物危害的关键控制点为锅炉下料巡检位。 展开更多
关键词 锗提取 职业病危害识别 关键控制点
原文传递
从锌锗浸出液中提取锗的研究进展 被引量:5
3
作者 杨芳芳 梁明 +2 位作者 狄浩凯 杨坤 张利波 《昆明理工大学学报(自然科学版)》 CAS 北大核心 2021年第1期9-17,共9页
锗资源开发对通讯和航空航天行业的发展具有重要的战略意义,由于提取锗的原料有限,所以开发和优化锗提取工艺受到日益关注.通过综述国内外从锌锗浸出液中提取锗的研究进展,对比多种锗的提取方法,总结出单宁沉锗法为应用最广泛的提锗方法... 锗资源开发对通讯和航空航天行业的发展具有重要的战略意义,由于提取锗的原料有限,所以开发和优化锗提取工艺受到日益关注.通过综述国内外从锌锗浸出液中提取锗的研究进展,对比多种锗的提取方法,总结出单宁沉锗法为应用最广泛的提锗方法.该方法具有绿色环保、操作简单的优点,但也存在单宁用量大,锗直收率低等问题亟待解决.基于超声波具有频率高、方向性好等优点,且已成功应用于湿法冶金工业中,因此进一步提出将超声外场引入单宁沉锗工艺中,并详细分析了超声外场强化的可行性和机理,以期降低单宁酸用量,提高锗直收率.指出超声外场强化单宁沉锗新工艺具有很好的研究和应用前景. 展开更多
关键词 锌锗浸出液 锗提取方法 单宁沉锗法 超声外场强化 直收率
原文传递
氧压酸浸炼锌流程中置换渣提取锗镓铟 被引量:27
4
作者 王继民 曹洪杨 +2 位作者 陈少纯 徐毅 张登凯 《稀有金属》 EI CAS CSCD 北大核心 2014年第3期471-479,共9页
为从锌精矿氧压酸浸炼锌工艺的置换渣中提取锗镓铟元素,对二段浸出-萃取分离锗镓铟铜工艺进行研究,锌电积废液用于一段浸出,H2S04-HF混酸用于一段浸出渣的二段浸出;一段浸出液分别采用二(2-乙基已基)磷酸(P204),C3~5氧肟酸+... 为从锌精矿氧压酸浸炼锌工艺的置换渣中提取锗镓铟元素,对二段浸出-萃取分离锗镓铟铜工艺进行研究,锌电积废液用于一段浸出,H2S04-HF混酸用于一段浸出渣的二段浸出;一段浸出液分别采用二(2-乙基已基)磷酸(P204),C3~5氧肟酸+二(2-乙基已基)(P204)磷酸及5-壬基水杨醛肟(CP150)分别萃取铟,锗镓及铜;二段浸出液用C3-5氧肟酸萃取提锗,萃余液加入氟化钠沉淀氟硅酸钠。试验结果显示,一段浸出用酸度为3.1N的湿法炼锌电积废液,液固比4:1,初始氧分压0.4MPa,150℃,经3h的二级浸出后,浸出渣率约为15%,铟镓铜锌4个元素的浸出率都达到98%,而锗浸出率约为80%;一段浸出残渣用H2SO4-HF混酸浸出,其氟/硅摩尔比4.2:1.0,硫酸浓度为2N温度80℃,液固比3:1,浸出时间为5h,一段浸出残渣中锗几乎完全浸出;一段浸出液在pH2.0~2.2,30%二(2-乙基已基)磷酸萃取,部分铁与几乎所有的铟被萃取,用2N盐酸反萃,铟、铁的反萃率分别为98.28%和2.79%,可达到铟铁的分离;萃铟余液用3%的氧肟酸+10%二(2-乙基已基)磷酸-煤油协萃锗、镓,铁也发生共萃,锗、镓和铁的单级萃取率均在90%以上,采用次氯酸钠反萃,锗反萃率近100%,且Ge/Ga和Ge/Fe的反萃分离系数分别为10836和318.7。用3mol·L^-1的硫酸,相比(W/O)1:2反萃镓,镓的一次反萃率达97.5%。二段浸出液采用10%C3~5氧肟酸-煤油萃取,相比(O/W)为1.2:1.0,锗的单级萃取率达到98.31%。经30%次氯酸钠溶液反萃,锗的一次反萃率达到98.83%,萃余液加入氟化钠,氟硅化物的沉淀率为90%左右。沉硅滤液经补充氢氟酸后返回二段沉出,锗的浸出仍可达到较完全的浸出。该工艺无废液排放,并且通过与湿法炼锌流程的物料交换而变得简化。 展开更多
关键词 锗镓提取 置换渣 二氧化硅基体中锗的溶出 锗镓溶剂萃取
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部