High-purity germanium(HPGe)detectors,which are used for direct dark matter detection,have the advantages of a low threshold and excellent energy resolution.The surface passivation of HPGe has become crucial for achiev...High-purity germanium(HPGe)detectors,which are used for direct dark matter detection,have the advantages of a low threshold and excellent energy resolution.The surface passivation of HPGe has become crucial for achieving an extremely low energy threshold.In this study,first-principles simulations,passivation film preparation,and metal oxide semiconductor(MOS)capacitor characterization were combined to study surface passivation.Theoretical calculations of the energy band structure of the -H,-OH,and -NH_(2) passivation groups on the surface of Ge were performed,and the interface state density and potential with five different passivation groups with N/O atomic ratios were accurately analyzed to obtain a stable surface state.Based on the theoretical calculation results,the surface passivation layers of the Ge_(2)ON_(2) film were prepared via magnetron sputtering in accordance with the optimum atomic ratio structure.The microstructure,C-V,and I-V electrical properties of the layers,and the passivation effect of the Al/Ge_(2)ON_(2)/Ge MOS were characterized to test the interface state density.The mean interface state density obtained by the Terman method was 8.4×10^(11) cm^(-2) eV^(-1).The processing of germanium oxynitrogen passivation films is expected to be used in direct dark matter detection of the HPGe detector surface passivation technology to reduce the detector leakage currents.展开更多
The ultralow detection threshold,ultralow intrinsic background,and excellent energy resolution of ptype point-contact germanium detectors are important for rare-event searches,in particular for the detection of direct...The ultralow detection threshold,ultralow intrinsic background,and excellent energy resolution of ptype point-contact germanium detectors are important for rare-event searches,in particular for the detection of direct dark matter interactions,coherent elastic neutrino-nucleus scattering,and neutrinoless double beta decay.Anomalous bulk events with an extremely fast rise time are observed in the CDEX-1B detector.We report a method of extracting fast bulk events from bulk events using a pulse shape simulation and reconstructed source experiment signature.Calibration data and the distribution of X-rays generated by intrinsic radioactivity verified that the fast bulk experienced a single hit near the passivation layer.The performance of this germanium detector indicates that it is capable of single-hit bulk spatial resolution and thus provides a background removal technique.展开更多
Radiation is considered one of the possible causes of cancer disease with natural background sources including cosmic, terrestrial and internal radiation. A number of cancer disease cases have been reported in Kargi w...Radiation is considered one of the possible causes of cancer disease with natural background sources including cosmic, terrestrial and internal radiation. A number of cancer disease cases have been reported in Kargi with their causes not properly documented. The present work characterized the radioactivity in soil and water, to find out possible causes of radiation in KARGI-KENYA by studying magnetic intensities, anomalous zones with depth to magnetic sources and delineating subsurface structures. A total of 117 soil and 14 water samples were collected from the entire area and analysed for radionuclides due to <sup>40</sup>K, <sup>232</sup>Th and <sup>226</sup>Ra. Measurement methods of proton magnetometer and gamma spectrometry employing a high purity germanium (HPGe) detector were employed basically to evaluate the magnetic survey and radiological hazard of radioactivities respectively. A total of 51 magnetic field measurements were taken on the eastern part of Kargi, a place suspected to have more concentration of radionuclides. The results showed that there could have been a fractionation during weathering period or metasomatic activity of the radioelements involvement. This study also reveals that the mining activities in the nearby study area could have affected the geologic formation causing more fracturing in rocks and pronounced subsurface structures as a result of mining that could have served as passage for leachates from pollutants as well as the level of radiation in the study area.展开更多
Compton scattering with bound electrons contributes to a significant atomic effect in low-momentum transfer,yielding background structures in direct light dark matter searches as well as low-energy rare event experime...Compton scattering with bound electrons contributes to a significant atomic effect in low-momentum transfer,yielding background structures in direct light dark matter searches as well as low-energy rare event experiments.We report the measurement of Compton scattering in low-momentum transfer by implementing a 10-g germanium detector bombarded by a^(137)Cs source with a radioactivity of 8.7 mCi and a scatter photon captured by a cylindrical NaI(Tl)detector.A fully relativistic impulse approximation combined with multi-configuration Dirac–Fock wavefunctions was evaluated,and the scattering function of Geant4 software was replaced by our calculation results.Our measurements show that the Livermore model with the modified scattering function in Geant4 is in good agreement with the experimental data.It is also revealed that atomic many-body effects significantly influence Compton scattering for low-momentum transfer(sub-keV energy transfer).展开更多
The point-contact high-purity germanium detector(HPGe)has the advantages of low background,low energy threshold,and high energy resolution and can be applied in the detection of rare-event physics.However,the performa...The point-contact high-purity germanium detector(HPGe)has the advantages of low background,low energy threshold,and high energy resolution and can be applied in the detection of rare-event physics.However,the performance of HPGe must be further improved to achieve superior energy resolution,low noise,and long-term reliability.In this study,we combine computational simulations and experimental comparisons to deeply understand the passivation mechanism of Ge.The surface passivation effect is calculated and inferred from the band structure and density of interface states,and further con-firmed by the minority carrier lifetime.The first-principles method based on the density functional theory was adopted to systematically study the lattice structure,band structure,and density of state(DOS)of four different systems:Ge–H,Ge–Ge-NH 2,Ge-OH,and Ge-SiO_(x).The electronic char-acteristics of the Ge(100)unit cell with different passi-vation groups and Si/O atomic ratios were compared.This shows that H,N,and O atoms can effectively reduce the surface DOS of the Ge atoms.The passivation effect of the SiO_(x) group varied with increasing O atoms and Si/O atomic ratios.Experimentally,SiO and SiO_(2) passivation films were fabricated by electron beam evaporation on a Ge substrate,and the valence state of Si and resistivity was measured to characterize the film.The minority carrier lifetime of Ge-SiO_(2) is 21.3 ls,which is approximately quadruple that of Ge-SiO.The passivation effect and mechanism are discussed in terms of hopping conduction and surface defect density.This study builds a relationship between the passivation effect and different termination groups,and provides technical support for the potential passivation layer,which can be applied in Ge detectors with ultralow energy thresholds and especially in HPGe for rare-event physics detection experiments in future.展开更多
The Safe Drinking Water Act (SDWA) mandates that the drinking water should be monitored for 226Ra and 228Ra isotopes and establishes the Maximum Contaminant Level of 185 mBq/L (5 pCi·L-1) for the sum. In addition...The Safe Drinking Water Act (SDWA) mandates that the drinking water should be monitored for 226Ra and 228Ra isotopes and establishes the Maximum Contaminant Level of 185 mBq/L (5 pCi·L-1) for the sum. In addition, SDWA regulates the Detection Limit (DL) of 37.0 mBq/L (1 pCi/L) for each isotope. The purpose of this work is to develop a working method for the determination of radium isotopes in drinking water satisfying the regulatory requirements of U.S. Environmental Protection Agency by utilizing our extensive experience in low-background gamma spectrometry at this laboratory. Two versions of the method were studied: destructive and non-destructive. Destructive method used the BaSO4 coprecipitation as well as 133Ba tracer for chemical recovery. We have used three gamma spectrometers: low-background 102% and 134% efficient with top muon guards, as well as an ultralow-background 140% efficient with full muon guard. We obtained a range of DLs from 5.3 to 22.6 mBq/L for 226Ra and from 7.4 to 30.4 mBq/L for 228Ra using the destructive method. For non-destructive method, the DL range was 26.0 to 26.9 mBq/L for 226Ra and 27.6 to 28.6 mBq/L for 228Ra using the 140% detector. To verify the methods, 7 to 10 laboratory control samples were spiked with both 226Ra and 228Ra at two different activities of 37.0 and 185 mBq/L. The results were evaluated by performing a combined location/variance chi-square test at a right-tail significance of 0.01 (99% Confidence Level), as stipulated by EPA. The verification results passed the chi-square tests at both activity levels. The destructive method can be accomplished using low-background gamma spectrometry, whereas non-destructive method requires ultralow-background gamma spectrometry.展开更多
暗物质探测是当今物理界重大前沿基础科学之一。中国暗物质实验(China Dark matter EXperiment,CDEX)是国内首个自主的暗物质直接探测实验。该实验依托国际最深最大、宇宙线通量最低的中国锦屏地下实验室(CJPL),旨在利用吨量级高纯锗探...暗物质探测是当今物理界重大前沿基础科学之一。中国暗物质实验(China Dark matter EXperiment,CDEX)是国内首个自主的暗物质直接探测实验。该实验依托国际最深最大、宇宙线通量最低的中国锦屏地下实验室(CJPL),旨在利用吨量级高纯锗探测器直接探测暗物质以及无中微子双贝塔衰变实验。CDEX合作组按照探测器质量大小已经历两个阶段,分别为CDEX-11 kg量级和CDEX-1010 kg量级。本文详细介绍了这两个阶段实验中最新重要的暗物质研究进展,包括年度调制效应、亚GeV轻暗物质分析、暗光子分析以及轴子分析。上述结果表明CDEX对低质量暗物质探测处于国际领先水平。CDEX合作组在锦屏地下实验室二期已建成约1700 m3的大型恒温液氮系统,届时将开展国际首个利用大型液氮屏蔽系统直接制冷的高纯锗阵列探测器实验。展开更多
The China Dark Matter Experiment (CDEX) is located at the China Jinping Underground Laboratory (CJPL) and aims to directly detect the weakly interacting massive particles (WIMP) flux with high sensitivity in the...The China Dark Matter Experiment (CDEX) is located at the China Jinping Underground Laboratory (CJPL) and aims to directly detect the weakly interacting massive particles (WIMP) flux with high sensitivity in the low mass region. Here we present a study of tile predicted photon and electron backgrounds including the background contribution of the structure materials of the germanium detector, the passive shielding materials, and the intrinsic radioactivity of the liquid argon that serves as an anti-Compton active shielding detector. A detailed geometry is modeled and the background contribution has been simulated based on the measured radioactivities of all possible components within tile GEANT4 program. Then the photon and electron background level in the energy region of interest (〈10-2events-kg1·day 1·keV-1 (cpkkd)) is predicted based on Monte Carlo simulations. The simulated result is consistent with the design goal of the CDEX-10 experiment, 0.1cpkkd, which shows that the active and passive shield design of CDEX-10 is effective and feasible.展开更多
Medium-wave HgCdTe thin films grown on germanium-based substrates by molecular beam epitaxy were treated by large area n-on-p injection junction and flip-flop mixing process.The chips interconnected with low-noise and...Medium-wave HgCdTe thin films grown on germanium-based substrates by molecular beam epitaxy were treated by large area n-on-p injection junction and flip-flop mixing process.The chips interconnected with low-noise and multimodal options readout circuit composed a 1280×1024 Medium-wave Infrared Focal Plane Cooling Detector whose pixel spacing was 15 microns.Its main photoelectric properties are average NETD equivalent to 18.5 mK,non-uniformity equivalent to 7.5%,operability equivalent to 98.97%.The paper also studies the substrate-removal technique on Germanium-based chip,which improves the stability and reliability of detector.展开更多
It is believed that weakly interacting massive particles (WIMPs) are candidates for dark matter (DM) in our universe which come from outer space and might interact with the standard model (SM) matter of our dete...It is believed that weakly interacting massive particles (WIMPs) are candidates for dark matter (DM) in our universe which come from outer space and might interact with the standard model (SM) matter of our detectors on the earth. Many collaborations in the world are carrying out various experiments to directly detect DM particles. China Jinping underground Laboratory (CJPL) is the deepest underground laboratory in the world and provides a very promising environment for DM search. China Dark matter EXperiment (CDEX) is going to directly detect the WIMP flux with high sensitivity in the low WIMP-mass region. Both CJPL and CDEX have achieved a remarkable progress in recent three years. CDEX employs a point-contact germanium (PCGe) semi-conductor detector whose energy threshold is less than 300 eV. In this report we present the measurement results of muon flux, monitoring of radioactivity and radon concentration carried out in CJPL, as well describing the structure and performance of the 1 kg-PCGe detector in CDEX-1 and 10 kg- PCGe detector array in CDEX-10 including the detectors, electronics, shielding and cooling systems. Finally we discuss the physics goals of CDEX-1, CDEX-10 and the future CDEX-1T experiments.展开更多
We report the first results on 76Ge neutrinoless double beta decay from stage one of the China dark-matter experiment (CDEX). A p-type point-contact high-purity germanium detector with a mass of 994g has been instal...We report the first results on 76Ge neutrinoless double beta decay from stage one of the China dark-matter experiment (CDEX). A p-type point-contact high-purity germanium detector with a mass of 994g has been installed to detect neutrinoless double beta decay events, as well as to directly detect dark matter particles. An exposure of 304kgd has been analyzed over a wide spectral band from 500keV to 3MeV. The average event rate obtained was about 0.012 counts per keV per kg per day over the 2.039MeV energy range. The half-life of76Ge neutrinoless double beta decay derived based on this result is 70v2〉6.4× 1022 yr (90%C.L.). An upper limit on the effective Majorana-neutrino mass of 5.0eV has been achieved.展开更多
基金supported by the National Natural Science Foundation of China(No.12005017).
文摘High-purity germanium(HPGe)detectors,which are used for direct dark matter detection,have the advantages of a low threshold and excellent energy resolution.The surface passivation of HPGe has become crucial for achieving an extremely low energy threshold.In this study,first-principles simulations,passivation film preparation,and metal oxide semiconductor(MOS)capacitor characterization were combined to study surface passivation.Theoretical calculations of the energy band structure of the -H,-OH,and -NH_(2) passivation groups on the surface of Ge were performed,and the interface state density and potential with five different passivation groups with N/O atomic ratios were accurately analyzed to obtain a stable surface state.Based on the theoretical calculation results,the surface passivation layers of the Ge_(2)ON_(2) film were prepared via magnetron sputtering in accordance with the optimum atomic ratio structure.The microstructure,C-V,and I-V electrical properties of the layers,and the passivation effect of the Al/Ge_(2)ON_(2)/Ge MOS were characterized to test the interface state density.The mean interface state density obtained by the Terman method was 8.4×10^(11) cm^(-2) eV^(-1).The processing of germanium oxynitrogen passivation films is expected to be used in direct dark matter detection of the HPGe detector surface passivation technology to reduce the detector leakage currents.
基金supported by the National Key Research and Development Program of China(No.2017YFA0402203)the National Natural Science Foundation of China(No.11975162)the SPARK project of the research and innovation program of Sichuan University(No.2018SCUH0051)。
文摘The ultralow detection threshold,ultralow intrinsic background,and excellent energy resolution of ptype point-contact germanium detectors are important for rare-event searches,in particular for the detection of direct dark matter interactions,coherent elastic neutrino-nucleus scattering,and neutrinoless double beta decay.Anomalous bulk events with an extremely fast rise time are observed in the CDEX-1B detector.We report a method of extracting fast bulk events from bulk events using a pulse shape simulation and reconstructed source experiment signature.Calibration data and the distribution of X-rays generated by intrinsic radioactivity verified that the fast bulk experienced a single hit near the passivation layer.The performance of this germanium detector indicates that it is capable of single-hit bulk spatial resolution and thus provides a background removal technique.
文摘Radiation is considered one of the possible causes of cancer disease with natural background sources including cosmic, terrestrial and internal radiation. A number of cancer disease cases have been reported in Kargi with their causes not properly documented. The present work characterized the radioactivity in soil and water, to find out possible causes of radiation in KARGI-KENYA by studying magnetic intensities, anomalous zones with depth to magnetic sources and delineating subsurface structures. A total of 117 soil and 14 water samples were collected from the entire area and analysed for radionuclides due to <sup>40</sup>K, <sup>232</sup>Th and <sup>226</sup>Ra. Measurement methods of proton magnetometer and gamma spectrometry employing a high purity germanium (HPGe) detector were employed basically to evaluate the magnetic survey and radiological hazard of radioactivities respectively. A total of 51 magnetic field measurements were taken on the eastern part of Kargi, a place suspected to have more concentration of radionuclides. The results showed that there could have been a fractionation during weathering period or metasomatic activity of the radioelements involvement. This study also reveals that the mining activities in the nearby study area could have affected the geologic formation causing more fracturing in rocks and pronounced subsurface structures as a result of mining that could have served as passage for leachates from pollutants as well as the level of radiation in the study area.
基金supported by the National Key Research and Development Program of China(No.2017YFA0402203),the National Natural Science Foundation of China(Nos.11975159 and 11975162).
文摘Compton scattering with bound electrons contributes to a significant atomic effect in low-momentum transfer,yielding background structures in direct light dark matter searches as well as low-energy rare event experiments.We report the measurement of Compton scattering in low-momentum transfer by implementing a 10-g germanium detector bombarded by a^(137)Cs source with a radioactivity of 8.7 mCi and a scatter photon captured by a cylindrical NaI(Tl)detector.A fully relativistic impulse approximation combined with multi-configuration Dirac–Fock wavefunctions was evaluated,and the scattering function of Geant4 software was replaced by our calculation results.Our measurements show that the Livermore model with the modified scattering function in Geant4 is in good agreement with the experimental data.It is also revealed that atomic many-body effects significantly influence Compton scattering for low-momentum transfer(sub-keV energy transfer).
基金supported by the National Natural Science Foundation of China Youth Fund(No.12005017)。
文摘The point-contact high-purity germanium detector(HPGe)has the advantages of low background,low energy threshold,and high energy resolution and can be applied in the detection of rare-event physics.However,the performance of HPGe must be further improved to achieve superior energy resolution,low noise,and long-term reliability.In this study,we combine computational simulations and experimental comparisons to deeply understand the passivation mechanism of Ge.The surface passivation effect is calculated and inferred from the band structure and density of interface states,and further con-firmed by the minority carrier lifetime.The first-principles method based on the density functional theory was adopted to systematically study the lattice structure,band structure,and density of state(DOS)of four different systems:Ge–H,Ge–Ge-NH 2,Ge-OH,and Ge-SiO_(x).The electronic char-acteristics of the Ge(100)unit cell with different passi-vation groups and Si/O atomic ratios were compared.This shows that H,N,and O atoms can effectively reduce the surface DOS of the Ge atoms.The passivation effect of the SiO_(x) group varied with increasing O atoms and Si/O atomic ratios.Experimentally,SiO and SiO_(2) passivation films were fabricated by electron beam evaporation on a Ge substrate,and the valence state of Si and resistivity was measured to characterize the film.The minority carrier lifetime of Ge-SiO_(2) is 21.3 ls,which is approximately quadruple that of Ge-SiO.The passivation effect and mechanism are discussed in terms of hopping conduction and surface defect density.This study builds a relationship between the passivation effect and different termination groups,and provides technical support for the potential passivation layer,which can be applied in Ge detectors with ultralow energy thresholds and especially in HPGe for rare-event physics detection experiments in future.
文摘The Safe Drinking Water Act (SDWA) mandates that the drinking water should be monitored for 226Ra and 228Ra isotopes and establishes the Maximum Contaminant Level of 185 mBq/L (5 pCi·L-1) for the sum. In addition, SDWA regulates the Detection Limit (DL) of 37.0 mBq/L (1 pCi/L) for each isotope. The purpose of this work is to develop a working method for the determination of radium isotopes in drinking water satisfying the regulatory requirements of U.S. Environmental Protection Agency by utilizing our extensive experience in low-background gamma spectrometry at this laboratory. Two versions of the method were studied: destructive and non-destructive. Destructive method used the BaSO4 coprecipitation as well as 133Ba tracer for chemical recovery. We have used three gamma spectrometers: low-background 102% and 134% efficient with top muon guards, as well as an ultralow-background 140% efficient with full muon guard. We obtained a range of DLs from 5.3 to 22.6 mBq/L for 226Ra and from 7.4 to 30.4 mBq/L for 228Ra using the destructive method. For non-destructive method, the DL range was 26.0 to 26.9 mBq/L for 226Ra and 27.6 to 28.6 mBq/L for 228Ra using the 140% detector. To verify the methods, 7 to 10 laboratory control samples were spiked with both 226Ra and 228Ra at two different activities of 37.0 and 185 mBq/L. The results were evaluated by performing a combined location/variance chi-square test at a right-tail significance of 0.01 (99% Confidence Level), as stipulated by EPA. The verification results passed the chi-square tests at both activity levels. The destructive method can be accomplished using low-background gamma spectrometry, whereas non-destructive method requires ultralow-background gamma spectrometry.
基金Supported by National Natural Science Foundation of China(11175099,10935005,10945002,11275107,11105076)State Key Development Program of Basic Research of China(2010CB833006)
文摘The China Dark Matter Experiment (CDEX) is located at the China Jinping Underground Laboratory (CJPL) and aims to directly detect the weakly interacting massive particles (WIMP) flux with high sensitivity in the low mass region. Here we present a study of tile predicted photon and electron backgrounds including the background contribution of the structure materials of the germanium detector, the passive shielding materials, and the intrinsic radioactivity of the liquid argon that serves as an anti-Compton active shielding detector. A detailed geometry is modeled and the background contribution has been simulated based on the measured radioactivities of all possible components within tile GEANT4 program. Then the photon and electron background level in the energy region of interest (〈10-2events-kg1·day 1·keV-1 (cpkkd)) is predicted based on Monte Carlo simulations. The simulated result is consistent with the design goal of the CDEX-10 experiment, 0.1cpkkd, which shows that the active and passive shield design of CDEX-10 is effective and feasible.
文摘Medium-wave HgCdTe thin films grown on germanium-based substrates by molecular beam epitaxy were treated by large area n-on-p injection junction and flip-flop mixing process.The chips interconnected with low-noise and multimodal options readout circuit composed a 1280×1024 Medium-wave Infrared Focal Plane Cooling Detector whose pixel spacing was 15 microns.Its main photoelectric properties are average NETD equivalent to 18.5 mK,non-uniformity equivalent to 7.5%,operability equivalent to 98.97%.The paper also studies the substrate-removal technique on Germanium-based chip,which improves the stability and reliability of detector.
文摘It is believed that weakly interacting massive particles (WIMPs) are candidates for dark matter (DM) in our universe which come from outer space and might interact with the standard model (SM) matter of our detectors on the earth. Many collaborations in the world are carrying out various experiments to directly detect DM particles. China Jinping underground Laboratory (CJPL) is the deepest underground laboratory in the world and provides a very promising environment for DM search. China Dark matter EXperiment (CDEX) is going to directly detect the WIMP flux with high sensitivity in the low WIMP-mass region. Both CJPL and CDEX have achieved a remarkable progress in recent three years. CDEX employs a point-contact germanium (PCGe) semi-conductor detector whose energy threshold is less than 300 eV. In this report we present the measurement results of muon flux, monitoring of radioactivity and radon concentration carried out in CJPL, as well describing the structure and performance of the 1 kg-PCGe detector in CDEX-1 and 10 kg- PCGe detector array in CDEX-10 including the detectors, electronics, shielding and cooling systems. Finally we discuss the physics goals of CDEX-1, CDEX-10 and the future CDEX-1T experiments.
基金supported by the National Natural Science Foundation of China(Grant Nos.11275107,11475117,11475099,and 11675088)the National Key Basic Research Program of China(Grant No.2010CB833006)
文摘We report the first results on 76Ge neutrinoless double beta decay from stage one of the China dark-matter experiment (CDEX). A p-type point-contact high-purity germanium detector with a mass of 994g has been installed to detect neutrinoless double beta decay events, as well as to directly detect dark matter particles. An exposure of 304kgd has been analyzed over a wide spectral band from 500keV to 3MeV. The average event rate obtained was about 0.012 counts per keV per kg per day over the 2.039MeV energy range. The half-life of76Ge neutrinoless double beta decay derived based on this result is 70v2〉6.4× 1022 yr (90%C.L.). An upper limit on the effective Majorana-neutrino mass of 5.0eV has been achieved.