In this paper, the algebraic, geometric and analytic multiplicities of an eigenvalue for linear differential operators are defined and classified. The relationships among three multiplicities of an eigenvalue of the l...In this paper, the algebraic, geometric and analytic multiplicities of an eigenvalue for linear differential operators are defined and classified. The relationships among three multiplicities of an eigenvalue of the linear differential operator are given, and a fundamental fact that the algebraic, geometric and analytic multiplicities for any eigenvalue of self-adjoint differential operators are equal is proven.展开更多
文摘In this paper, the algebraic, geometric and analytic multiplicities of an eigenvalue for linear differential operators are defined and classified. The relationships among three multiplicities of an eigenvalue of the linear differential operator are given, and a fundamental fact that the algebraic, geometric and analytic multiplicities for any eigenvalue of self-adjoint differential operators are equal is proven.
基金The Major Project of the Ministry of Education of China (205180)Excellent Youth Reward Foundation of the Higher Education Institution of Xinjiang (XJEDU2004E05) Xinjiang University Science Foundation