We propose a mobility assisted spectrum aware routing(MASAR) protocol for cognitive radio ad hoc networks(CRAHNs),providing robustness to primary user activity and node mobility.This protocol allows nodes to collect s...We propose a mobility assisted spectrum aware routing(MASAR) protocol for cognitive radio ad hoc networks(CRAHNs),providing robustness to primary user activity and node mobility.This protocol allows nodes to collect spectrum information during a spectrum management interval followed by a transmission period.Cognitive users discover next hops based on the collected spectrum and mobility information.Using a beaconless mechanism,nodes obtain the mobility information and spectrum status of their neighbors.A geographical routing scheme is adopted to avoid performance degradation specially due to the mobility of the nodes and the activity of the primary users.Our scheme uses two approaches to fnd either short or stable routes.Since mobility metrics have a signifcant role in the selection of the next hop,both approaches use a reactive mobility update process assisted by mobility prediction to avoid location errors.MASAR protocol performance is investigated through simulations of diferent scenarios and compared with that of the most similar protocol,CAODV.The results indicate that MASAR can achieve signifcant reduction in control overhead as well as improved packet delivery in highly mobile networks.展开更多
In the pursuit of sustainable urbanization,Bike-Sharing Services(BSS)emerge as a pivotal instrument for promoting green,low-carbon transit.While BSS is often commended for its environmental benefits,we offer a more nu...In the pursuit of sustainable urbanization,Bike-Sharing Services(BSS)emerge as a pivotal instrument for promoting green,low-carbon transit.While BSS is often commended for its environmental benefits,we offer a more nuanced analysis that elucidates previously neglected aspects.Through the Dominant Travel Distance Model(DTDM),we evaluate the potential of BSS to replace other transportation modes for specific journey based on travel distance.Utilizing multiscale geographically weighted regression(MGWR),we illuminate the relationship between BSS’s environmental benefits and built-environment attributes.The life cycle analysis(LCA)quantifies greenhouse gas(GHG)emissions from production to operation,providing a deeper understanding of BSS’s environmental benefits.Notably,our study focuses on Xiamen Island,a Chinese“Type Ⅱ large-sized city”(1–3 million population),contrasting with the predominantly studied“super large-sized cities”(over 10 million population).Our findings highlight:(1)A single BSS trip in Xiamen Island reduces GHG emissions by an average of 19.97 g CO_(2)-eq,accumulating monthly savings of 144.477 t CO_(2)-eq.(2)Areas in the southwest,northeast,and southeast of Xiamen Island,characterized by high population densities,register significant BSS environmental benefits.(3)At a global level,the stepwise regression model identifies five key built environment factors influencing BSS’s GHG mitigation.(4)Regionally,MGWR enhances model precision,indicating that these five factors function at diverse spatial scales,affecting BSS’s environmental benefits variably.展开更多
基金Project supported by Iran Telecommunication Research Center(ITRC)
文摘We propose a mobility assisted spectrum aware routing(MASAR) protocol for cognitive radio ad hoc networks(CRAHNs),providing robustness to primary user activity and node mobility.This protocol allows nodes to collect spectrum information during a spectrum management interval followed by a transmission period.Cognitive users discover next hops based on the collected spectrum and mobility information.Using a beaconless mechanism,nodes obtain the mobility information and spectrum status of their neighbors.A geographical routing scheme is adopted to avoid performance degradation specially due to the mobility of the nodes and the activity of the primary users.Our scheme uses two approaches to fnd either short or stable routes.Since mobility metrics have a signifcant role in the selection of the next hop,both approaches use a reactive mobility update process assisted by mobility prediction to avoid location errors.MASAR protocol performance is investigated through simulations of diferent scenarios and compared with that of the most similar protocol,CAODV.The results indicate that MASAR can achieve signifcant reduction in control overhead as well as improved packet delivery in highly mobile networks.
基金Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515011174)the National Natural Science Foundation of China(Grant No.42101351).
文摘In the pursuit of sustainable urbanization,Bike-Sharing Services(BSS)emerge as a pivotal instrument for promoting green,low-carbon transit.While BSS is often commended for its environmental benefits,we offer a more nuanced analysis that elucidates previously neglected aspects.Through the Dominant Travel Distance Model(DTDM),we evaluate the potential of BSS to replace other transportation modes for specific journey based on travel distance.Utilizing multiscale geographically weighted regression(MGWR),we illuminate the relationship between BSS’s environmental benefits and built-environment attributes.The life cycle analysis(LCA)quantifies greenhouse gas(GHG)emissions from production to operation,providing a deeper understanding of BSS’s environmental benefits.Notably,our study focuses on Xiamen Island,a Chinese“Type Ⅱ large-sized city”(1–3 million population),contrasting with the predominantly studied“super large-sized cities”(over 10 million population).Our findings highlight:(1)A single BSS trip in Xiamen Island reduces GHG emissions by an average of 19.97 g CO_(2)-eq,accumulating monthly savings of 144.477 t CO_(2)-eq.(2)Areas in the southwest,northeast,and southeast of Xiamen Island,characterized by high population densities,register significant BSS environmental benefits.(3)At a global level,the stepwise regression model identifies five key built environment factors influencing BSS’s GHG mitigation.(4)Regionally,MGWR enhances model precision,indicating that these five factors function at diverse spatial scales,affecting BSS’s environmental benefits variably.