Recently, location-based routings in wireless sensor networks (WSNs) are attracting a lot of interest in the research community, especially because of its scalability. In location-based routing, the network size is sc...Recently, location-based routings in wireless sensor networks (WSNs) are attracting a lot of interest in the research community, especially because of its scalability. In location-based routing, the network size is scalable without increasing the signalling overhead as routing decisions are inherently localized. Here, each node is aware of its position in the network through some positioning device like GPS and uses this information in the routing mechanism. In this paper, we first discuss the basics of WSNs including the architecture of the network, energy consumption for the components of a typical sensor node, and draw a detailed picture of classification of location-based routing protocols. Then, we present a systematic and comprehensive taxonomy of location-based routing protocols, mostly for sensor networks. All the schemes are subsequently discussed in depth. Finally, we conclude the paper with some insights on potential research directions for location-based routing in WSNs.展开更多
Geographic Routing (GR) algorithms require nodes to periodically transmit HELLO messages to allow neighbors to know their positions (beaconing mechanism). Beacon-less routing algorithms have recently been proposed...Geographic Routing (GR) algorithms require nodes to periodically transmit HELLO messages to allow neighbors to know their positions (beaconing mechanism). Beacon-less routing algorithms have recently been proposed to reduce the control overheads due to these messages. However, existing beacon-less algorithms have not considered realistic physical layers. Therefore, those algorithms cannot work properly in realistic scenarios. In this paper we present a new beacon-less routing protocol called BOSS. Its design is based on the conclusions of our open-field experiments using Tmote-sky sensors. BOSS is adapted to error-prone networks and incorporates a new mechanism to reduce collisions and duplicate messages produced during the selection of the next forwarder node. We compare BOSS with Beacon-Less Routing (BLR) and Contention-Based Forwarding (CBF) algorithms through extensive simulations. The results show that our scheme is able to ache.eve almost perfect packet delivery ratio (like BLR) while having a low bandwidth consumption (even lower than CBF). Additionally, we carried out an empirical evaluation in a real testbed that shows the correctness of our simulation results.展开更多
This work proposes an efficient disjoint multipath geographic routing algorithm for dense wireless sensor networks (WSN), called Multipath Grid-based Enabled Geographic Routing (MGEGR). The proposed algorithm relies o...This work proposes an efficient disjoint multipath geographic routing algorithm for dense wireless sensor networks (WSN), called Multipath Grid-based Enabled Geographic Routing (MGEGR). The proposed algorithm relies on the construction of a 2-D logical grid in the geographical region of deployment. The objective of the proposed scheme is to determine optimal or near-optimal (within a defined constant) multiple disjoint paths (multipath) from a source node to the sink, in order to enhance the reliability of the network. The determined multiple disjoint paths would be used by the source node in a round-robin way to balance the traffic across the disjoint paths, and to avoid discovered paths with cell holes. The proposed scheme limits the use of broadcasting to the process of gateway election within each cell, and the process of maintaining the table of neighbors of each gateway. Our simulation results show the effectiveness and scalability of our routing scheme with increased network size compared to on-demand routing protocols.展开更多
文摘Recently, location-based routings in wireless sensor networks (WSNs) are attracting a lot of interest in the research community, especially because of its scalability. In location-based routing, the network size is scalable without increasing the signalling overhead as routing decisions are inherently localized. Here, each node is aware of its position in the network through some positioning device like GPS and uses this information in the routing mechanism. In this paper, we first discuss the basics of WSNs including the architecture of the network, energy consumption for the components of a typical sensor node, and draw a detailed picture of classification of location-based routing protocols. Then, we present a systematic and comprehensive taxonomy of location-based routing protocols, mostly for sensor networks. All the schemes are subsequently discussed in depth. Finally, we conclude the paper with some insights on potential research directions for location-based routing in WSNs.
基金Spanish MEC under Grant No.TIN2005-07705-C02-02 and the"Ramony Cajal"work programme.
文摘Geographic Routing (GR) algorithms require nodes to periodically transmit HELLO messages to allow neighbors to know their positions (beaconing mechanism). Beacon-less routing algorithms have recently been proposed to reduce the control overheads due to these messages. However, existing beacon-less algorithms have not considered realistic physical layers. Therefore, those algorithms cannot work properly in realistic scenarios. In this paper we present a new beacon-less routing protocol called BOSS. Its design is based on the conclusions of our open-field experiments using Tmote-sky sensors. BOSS is adapted to error-prone networks and incorporates a new mechanism to reduce collisions and duplicate messages produced during the selection of the next forwarder node. We compare BOSS with Beacon-Less Routing (BLR) and Contention-Based Forwarding (CBF) algorithms through extensive simulations. The results show that our scheme is able to ache.eve almost perfect packet delivery ratio (like BLR) while having a low bandwidth consumption (even lower than CBF). Additionally, we carried out an empirical evaluation in a real testbed that shows the correctness of our simulation results.
文摘This work proposes an efficient disjoint multipath geographic routing algorithm for dense wireless sensor networks (WSN), called Multipath Grid-based Enabled Geographic Routing (MGEGR). The proposed algorithm relies on the construction of a 2-D logical grid in the geographical region of deployment. The objective of the proposed scheme is to determine optimal or near-optimal (within a defined constant) multiple disjoint paths (multipath) from a source node to the sink, in order to enhance the reliability of the network. The determined multiple disjoint paths would be used by the source node in a round-robin way to balance the traffic across the disjoint paths, and to avoid discovered paths with cell holes. The proposed scheme limits the use of broadcasting to the process of gateway election within each cell, and the process of maintaining the table of neighbors of each gateway. Our simulation results show the effectiveness and scalability of our routing scheme with increased network size compared to on-demand routing protocols.