Bozek(1980)has introduced a class of solvable Lie groups Gn with arbitrary odd dimension to construct irreducible generalized symmetric Riemannian space such that the identity component of its full isometry group is s...Bozek(1980)has introduced a class of solvable Lie groups Gn with arbitrary odd dimension to construct irreducible generalized symmetric Riemannian space such that the identity component of its full isometry group is solvable.In this article,the authors provide the set of all left-invariant minimal unit vector fields on the solvable Lie group Gn,and give the relationships between the minimal unit vector fields and the geodesic vector fields,the strongly normal unit vectors respectively.展开更多
This work gives a classification theorem for affine immersions with planar geodesics in the case where the codimension is maximal. Vrancken classified parallel affine immersions in this case and obtained, among others...This work gives a classification theorem for affine immersions with planar geodesics in the case where the codimension is maximal. Vrancken classified parallel affine immersions in this case and obtained, among others, generalized Veronese submanifolds. In this work it is shown that the immersions with planar geodesics are the same as the parallel ones in the considered case. A geometric interpretation of parallel immersions is also given: The affine immersions with pointwise planar normal sections (with respect to the equiaffine transversal bundle) are parallel. This result is verified for surfaces in R4 and for immersions with the maximal codimension.展开更多
In this paper, we apply two different algorithms to find the geodesic equation of the normal distribution. The first algorithm consists of solving a triply partial differential equation where these equations originate...In this paper, we apply two different algorithms to find the geodesic equation of the normal distribution. The first algorithm consists of solving a triply partial differential equation where these equations originated from the normal distribution. While the second algorithm applies the well-known Darboux Theory. These two algorithms draw the same geodesic equation. Finally, we applied Baltzer R.’s finding to compute the Gaussian Curvature.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 12001007,12201358)the Natural Science Foundation of Shandong Province (No. ZR2021QA051)+1 种基金the Natural Science Foundation of Anhui Province (No. 1908085QA03)Starting Research Funds of Shandong University of Science and Technology (Nos. 0104060511817, 0104060540626)
文摘Bozek(1980)has introduced a class of solvable Lie groups Gn with arbitrary odd dimension to construct irreducible generalized symmetric Riemannian space such that the identity component of its full isometry group is solvable.In this article,the authors provide the set of all left-invariant minimal unit vector fields on the solvable Lie group Gn,and give the relationships between the minimal unit vector fields and the geodesic vector fields,the strongly normal unit vectors respectively.
文摘This work gives a classification theorem for affine immersions with planar geodesics in the case where the codimension is maximal. Vrancken classified parallel affine immersions in this case and obtained, among others, generalized Veronese submanifolds. In this work it is shown that the immersions with planar geodesics are the same as the parallel ones in the considered case. A geometric interpretation of parallel immersions is also given: The affine immersions with pointwise planar normal sections (with respect to the equiaffine transversal bundle) are parallel. This result is verified for surfaces in R4 and for immersions with the maximal codimension.
文摘In this paper, we apply two different algorithms to find the geodesic equation of the normal distribution. The first algorithm consists of solving a triply partial differential equation where these equations originated from the normal distribution. While the second algorithm applies the well-known Darboux Theory. These two algorithms draw the same geodesic equation. Finally, we applied Baltzer R.’s finding to compute the Gaussian Curvature.