The optional types of power source and actuator in the aircraft are more and more diverse due to fast development in more electric technology, which makes the combinations of different power sources and actuators beco...The optional types of power source and actuator in the aircraft are more and more diverse due to fast development in more electric technology, which makes the combinations of different power sources and actuators become extremely complex in the architecture optimization process of airborne actuation system. The traditional "trial and error" method cannot satisfy the design demands. In this paper, firstly, the composition of more electric aircraft (MEA) flight control actuation system (FCAS) is introduced, and the possible architecture quantity is calculated. Secondly, the evaluation criteria of FCAS architecture with respect to safe reliability, weight and efficiency are proposed, and the evaluation criteria values are calculated in the case that each control surface adopts the same actuator configuration. Finally, the optimization results of MEA FCAS architecture are obtained by applying genetic algorithm (GA). Compared to the traditional actuation system architecture, which only adopts servo valve controlled hydraulic actuators, the weight of the optimized more electric actuation system architecture can be reduced by 6%, and the efficiency can be improved by 30% based on the safe reliability requirements.展开更多
Autism spectrum disorder(ASD) is a spectral neurodevelopment disorder affecting approximately 1% of the population. ASD is characterized by impairments in reciprocal social interaction, communication deficits and rest...Autism spectrum disorder(ASD) is a spectral neurodevelopment disorder affecting approximately 1% of the population. ASD is characterized by impairments in reciprocal social interaction, communication deficits and restricted patterns of behavior. Multiple factors, including genetic/genomic, epigenetic/epigenomic and environmental, are thought to be necessary for autism development. Recent reviews have provided further insight into the genetic/genomic basis of ASD. It has long been suspected that epigenetic mechanisms, including DNA methylation, chromatin structures and long non-coding RNAs may play important roles in the pathology of ASD. In addition to genetic/genomic alterations and epigenetic/epigenomic influences, environmental exposures have been widely accepted as an important role in autism etiology, among which immune dysregulation and gastrointestinal microbiota are two prominent ones.展开更多
Studies that investigated the genetic basis of source and sink related traits have been widely conducted.However, the vascular system that links source and sink received much less attention. When maize was domesticate...Studies that investigated the genetic basis of source and sink related traits have been widely conducted.However, the vascular system that links source and sink received much less attention. When maize was domesticated from its wild ancestor, teosinte, the external morphology has changed dramatically; however, less is known for the internal anatomy changes. In this study, using a large maize-teosinte experimental population, we performed a high-resolution quantitative trait locus(QTL) mapping for the number of vascular bundle in the uppermost internode of maize stem.The results showed that vascular bundle number is dominated by a large number of small-effect QTLs, in which a total of 16 QTLs that jointly accounts for 52.2% of phenotypic variation were detected, with no single QTL explaining more than 6% of variation. Different from QTLs for typical domestication traits, QTLs for vascular bundle number might not be under directional selection following domestication.Using Near Isogenic Lines(NILs) developed from heterogeneous inbred family(HIF), we further validated the effect of one QTL qVb9-2 on chromosome 9 and fine mapped the QTL to a 1.8-Mb physical region. This study provides important insights for the genetic architecture of vascular bundle number in maize stem and sets basis for cloning of qVb9-2.展开更多
Maintenance and management of genetic diversity of farm animal genetic resources (AnGR) is very important for biological, socioeconomical and cultural significance. The core concern of conservation for farm AnGR is ...Maintenance and management of genetic diversity of farm animal genetic resources (AnGR) is very important for biological, socioeconomical and cultural significance. The core concern of conservation for farm AnGR is the retention of genetic diversity of conserved populations in a long-term perspective. However, numerous factors may affect evolution of genetic diversity of a conserved population. Among those factors, the genetic architecture of conserved populations is little considered in current conservation strategies. In this study, we investigated the dynamic changes of genetic diversity of conserved populations with two scenarios on initial genetic architectures by computer simulation in which thirty polymorphic microsatellite loci were chosen to represent genetic architecture of the populations with observed heterozygosity (Ho) and expected heterozygosity (He), observed and mean effective number of alleles (Ao and Ae), number of polymorphic loci (NP) and the percentage of polymorphic loci (PP), number of rare alleles (RA) and number of non-rich polymorphic loci (NRP) as the estimates of genetic diversity. The two scenarios on genetic architecture were taken into account, namely, one conserved population with same allele frequency (AS) and another one with actual allele frequency (AA). The results showed that the magnitude of loss of genetic diversity is associated with genetic architecture of initial conserved population, the amplitude of genetic diversity decline in the context AS was more narrow extent than those in context AA, the ranges of decline of Ho and Ao were about 4 and 2 times in AA compared with that in AS, respectively, the occurrence of first monomorphic locus and the time of change of measure NP in scenario AA is 20 generations and 23 generations earlier than that in scenario AS, respectively. Additionally, we found that NRP, a novel measure proposed by our research group, was a proper estimate for monitoring the evolution of genetic diversity in a clos展开更多
The experiment was conducted at the experimental field of Olericulture Division, Horticulture Research Centre (HRC), Bangladesh Agricultural Research Institute (BARI), Gazipur, Bangladesh during the winter season of 2...The experiment was conducted at the experimental field of Olericulture Division, Horticulture Research Centre (HRC), Bangladesh Agricultural Research Institute (BARI), Gazipur, Bangladesh during the winter season of 2018-2019 to study the genetic architecture of yield in a seven parent half diallel cross of bottle gourd. The values of mean square for GCA (general combining ability) and SCA (specific combining ability) were highly significant which suggested the presence of both additive and non-additive genetic variance in the population. But the higher magnitude of GCA compared to SCA indicated predominance of additive genetic variance. In most of the cases, the cross between poor and poor parents showed positive SCA effect for fruit yield, which indicated the higher yield. The estimates of significant positive better parent heterosis ranged from 6.27 to 49.72 percent. Analysis of genetic components of variation suggested that additive components were more important in the inheritance of fruit yield. This character was observed being controlled by two to three pairs of genes or groups of genes. Narrow sense heritability was 23 percent indicating probability of selection in generations. The graphical analysis also indicated wide genetic diversity among the parents.展开更多
The Asian cultivated rice Oryza sativa can be classified into two major subspecies:japonica/geng and indica/xian.There are large physiological and phenotypic differences between the two subspecies,with each having its...The Asian cultivated rice Oryza sativa can be classified into two major subspecies:japonica/geng and indica/xian.There are large physiological and phenotypic differences between the two subspecies,with each having its advantages and disadvantages.Understanding the differences between xian and geng could provide a foundation for cultivar improvement based on hybridization between subspecies in order to synthesize favorable traits.We review the origin and domestication of xian and geng rice,compare their differences in terms of physiological and phenotypical traits,and describe the molecular mechanism differences between the subspecies.Based on this knowledge,we propose an ideal plant architecture of geng rice varieties for northern regions.展开更多
随着新一代基因组测序技术的快速发展,全基因组关联分析(genome wide association study,GWAS)在揭示林木复杂性状的数量遗传变异规律、解析关键基因的遗传调控机制及推动林木分子辅助育种等方面展示出前所未有的应用前景.本文首先综述...随着新一代基因组测序技术的快速发展,全基因组关联分析(genome wide association study,GWAS)在揭示林木复杂性状的数量遗传变异规律、解析关键基因的遗传调控机制及推动林木分子辅助育种等方面展示出前所未有的应用前景.本文首先综述了GWAS的核心理论、研究方法及其在木材性状和适应性遗传基础研究中的研究进展.随后,针对林木数量性状遗传研究中普遍存在的"丢失遗传力"(missing heritability)问题,本文从高通量表型组学平台的组建,多种遗传标记的联合利用,多组学数据的系统剖析以及加性、显性与上位性关联模型的开发等方面提出了未来GWAS的发展对策.最后,结合当前林木遗传改良的实践需求,展望了GWAS策略在林木分子育种领域的广阔应用前景.展开更多
Modifications of inflorescence architecture have been crucial for the successful domestication of wheat and barley, which are central members of the Triticeae tribe that provide essential grains for the human diet. In...Modifications of inflorescence architecture have been crucial for the successful domestication of wheat and barley, which are central members of the Triticeae tribe that provide essential grains for the human diet. Investigation of the genes and alleles that underpin domestication-related traits has provided valuable insights into the molecular regulation of inflorescence development of the Triticeae, and further investigation of modified forms of architecture are proving to be equally fruitful.The identified genes are involved in diverse biological processes, including transcriptional regulation, hormone biosynthesis and metabolism, post-transcriptional and post-translational regulation, which alter inflorescence architecture by modifying the development and fertility of lateral organs, called spikelets and florets. Recent advances in sequencing capabilities and the generation of mutant populations are accelerating the identification of genes that influence inflorescence development, which is important given that genetic variation for this trait promises to be a valuable resource for optimizing grain production. This review assesses recent advances in our understanding of the genes controlling inflorescence development in wheat and barley, with the aim of highlighting the importance of improvements in developmental biology for optimizing the agronomic performance of staple crop plants.展开更多
基金National Natural Science Foundation of China (50675009) International Science & Technology Cooperation Program of China (2010DFA72540)
文摘The optional types of power source and actuator in the aircraft are more and more diverse due to fast development in more electric technology, which makes the combinations of different power sources and actuators become extremely complex in the architecture optimization process of airborne actuation system. The traditional "trial and error" method cannot satisfy the design demands. In this paper, firstly, the composition of more electric aircraft (MEA) flight control actuation system (FCAS) is introduced, and the possible architecture quantity is calculated. Secondly, the evaluation criteria of FCAS architecture with respect to safe reliability, weight and efficiency are proposed, and the evaluation criteria values are calculated in the case that each control surface adopts the same actuator configuration. Finally, the optimization results of MEA FCAS architecture are obtained by applying genetic algorithm (GA). Compared to the traditional actuation system architecture, which only adopts servo valve controlled hydraulic actuators, the weight of the optimized more electric actuation system architecture can be reduced by 6%, and the efficiency can be improved by 30% based on the safe reliability requirements.
基金supported by grants from the National Basic Research Program of China(973 Program,2010CB529601,2013CB945404)
文摘Autism spectrum disorder(ASD) is a spectral neurodevelopment disorder affecting approximately 1% of the population. ASD is characterized by impairments in reciprocal social interaction, communication deficits and restricted patterns of behavior. Multiple factors, including genetic/genomic, epigenetic/epigenomic and environmental, are thought to be necessary for autism development. Recent reviews have provided further insight into the genetic/genomic basis of ASD. It has long been suspected that epigenetic mechanisms, including DNA methylation, chromatin structures and long non-coding RNAs may play important roles in the pathology of ASD. In addition to genetic/genomic alterations and epigenetic/epigenomic influences, environmental exposures have been widely accepted as an important role in autism etiology, among which immune dysregulation and gastrointestinal microbiota are two prominent ones.
基金supported by the National Hi-Tech Research and Development Program of China(2012AA10A307)National Natural Science Foundation of China(31322042)+1 种基金the Recruitment Program of Global Expertsthe Fundamental Research Funds for the Central Universities
文摘Studies that investigated the genetic basis of source and sink related traits have been widely conducted.However, the vascular system that links source and sink received much less attention. When maize was domesticated from its wild ancestor, teosinte, the external morphology has changed dramatically; however, less is known for the internal anatomy changes. In this study, using a large maize-teosinte experimental population, we performed a high-resolution quantitative trait locus(QTL) mapping for the number of vascular bundle in the uppermost internode of maize stem.The results showed that vascular bundle number is dominated by a large number of small-effect QTLs, in which a total of 16 QTLs that jointly accounts for 52.2% of phenotypic variation were detected, with no single QTL explaining more than 6% of variation. Different from QTLs for typical domestication traits, QTLs for vascular bundle number might not be under directional selection following domestication.Using Near Isogenic Lines(NILs) developed from heterogeneous inbred family(HIF), we further validated the effect of one QTL qVb9-2 on chromosome 9 and fine mapped the QTL to a 1.8-Mb physical region. This study provides important insights for the genetic architecture of vascular bundle number in maize stem and sets basis for cloning of qVb9-2.
基金Pioneer R&D Program of Zhejiang Province(2023C02002-3)Collaborative Innovation Center for Modern Crop Production Cosponsored by Province and Ministry(CIC-MCP).
基金partly supported by the program for Changjiang Scholar and Innovation Research Team in University, China (IRT1191)the Beijing Science and Technology Project, China (Z080005022208015)the Chinese Universities Scientific Fund (2012YJ058)
文摘Maintenance and management of genetic diversity of farm animal genetic resources (AnGR) is very important for biological, socioeconomical and cultural significance. The core concern of conservation for farm AnGR is the retention of genetic diversity of conserved populations in a long-term perspective. However, numerous factors may affect evolution of genetic diversity of a conserved population. Among those factors, the genetic architecture of conserved populations is little considered in current conservation strategies. In this study, we investigated the dynamic changes of genetic diversity of conserved populations with two scenarios on initial genetic architectures by computer simulation in which thirty polymorphic microsatellite loci were chosen to represent genetic architecture of the populations with observed heterozygosity (Ho) and expected heterozygosity (He), observed and mean effective number of alleles (Ao and Ae), number of polymorphic loci (NP) and the percentage of polymorphic loci (PP), number of rare alleles (RA) and number of non-rich polymorphic loci (NRP) as the estimates of genetic diversity. The two scenarios on genetic architecture were taken into account, namely, one conserved population with same allele frequency (AS) and another one with actual allele frequency (AA). The results showed that the magnitude of loss of genetic diversity is associated with genetic architecture of initial conserved population, the amplitude of genetic diversity decline in the context AS was more narrow extent than those in context AA, the ranges of decline of Ho and Ao were about 4 and 2 times in AA compared with that in AS, respectively, the occurrence of first monomorphic locus and the time of change of measure NP in scenario AA is 20 generations and 23 generations earlier than that in scenario AS, respectively. Additionally, we found that NRP, a novel measure proposed by our research group, was a proper estimate for monitoring the evolution of genetic diversity in a clos
文摘The experiment was conducted at the experimental field of Olericulture Division, Horticulture Research Centre (HRC), Bangladesh Agricultural Research Institute (BARI), Gazipur, Bangladesh during the winter season of 2018-2019 to study the genetic architecture of yield in a seven parent half diallel cross of bottle gourd. The values of mean square for GCA (general combining ability) and SCA (specific combining ability) were highly significant which suggested the presence of both additive and non-additive genetic variance in the population. But the higher magnitude of GCA compared to SCA indicated predominance of additive genetic variance. In most of the cases, the cross between poor and poor parents showed positive SCA effect for fruit yield, which indicated the higher yield. The estimates of significant positive better parent heterosis ranged from 6.27 to 49.72 percent. Analysis of genetic components of variation suggested that additive components were more important in the inheritance of fruit yield. This character was observed being controlled by two to three pairs of genes or groups of genes. Narrow sense heritability was 23 percent indicating probability of selection in generations. The graphical analysis also indicated wide genetic diversity among the parents.
基金supported by the National Natural Science Foundation of China(32071982 and U1708231).
文摘The Asian cultivated rice Oryza sativa can be classified into two major subspecies:japonica/geng and indica/xian.There are large physiological and phenotypic differences between the two subspecies,with each having its advantages and disadvantages.Understanding the differences between xian and geng could provide a foundation for cultivar improvement based on hybridization between subspecies in order to synthesize favorable traits.We review the origin and domestication of xian and geng rice,compare their differences in terms of physiological and phenotypical traits,and describe the molecular mechanism differences between the subspecies.Based on this knowledge,we propose an ideal plant architecture of geng rice varieties for northern regions.
文摘随着新一代基因组测序技术的快速发展,全基因组关联分析(genome wide association study,GWAS)在揭示林木复杂性状的数量遗传变异规律、解析关键基因的遗传调控机制及推动林木分子辅助育种等方面展示出前所未有的应用前景.本文首先综述了GWAS的核心理论、研究方法及其在木材性状和适应性遗传基础研究中的研究进展.随后,针对林木数量性状遗传研究中普遍存在的"丢失遗传力"(missing heritability)问题,本文从高通量表型组学平台的组建,多种遗传标记的联合利用,多组学数据的系统剖析以及加性、显性与上位性关联模型的开发等方面提出了未来GWAS的发展对策.最后,结合当前林木遗传改良的实践需求,展望了GWAS策略在林木分子育种领域的广阔应用前景.
基金the BBSRC (BBS/E/J/000PR9779 BBS/ E/J/000PR9787+2 种基金 BB/P016855/1)the Royal Society (UF150081)the International Wheat Yield Partnership for supporting our research
文摘Modifications of inflorescence architecture have been crucial for the successful domestication of wheat and barley, which are central members of the Triticeae tribe that provide essential grains for the human diet. Investigation of the genes and alleles that underpin domestication-related traits has provided valuable insights into the molecular regulation of inflorescence development of the Triticeae, and further investigation of modified forms of architecture are proving to be equally fruitful.The identified genes are involved in diverse biological processes, including transcriptional regulation, hormone biosynthesis and metabolism, post-transcriptional and post-translational regulation, which alter inflorescence architecture by modifying the development and fertility of lateral organs, called spikelets and florets. Recent advances in sequencing capabilities and the generation of mutant populations are accelerating the identification of genes that influence inflorescence development, which is important given that genetic variation for this trait promises to be a valuable resource for optimizing grain production. This review assesses recent advances in our understanding of the genes controlling inflorescence development in wheat and barley, with the aim of highlighting the importance of improvements in developmental biology for optimizing the agronomic performance of staple crop plants.