针对在多约束条件下移动机器人在路径规划中搜索效率低、收敛速度慢的缺点,提出多约束条件下基于改进遗传算法的移动机器人路径规划,充分考虑路径长度、平滑度以及困难度这3种因素的影响,通过分析多约束条件下遗传算法在初始化种群时计...针对在多约束条件下移动机器人在路径规划中搜索效率低、收敛速度慢的缺点,提出多约束条件下基于改进遗传算法的移动机器人路径规划,充分考虑路径长度、平滑度以及困难度这3种因素的影响,通过分析多约束条件下遗传算法在初始化种群时计算方法的不足,提出利用SPS(surrounding point set)算法,通过在障碍物周围生成点来产生初始路径,以提高算法快速生成初始种群的能力;增加平滑算子和删除算子,删除相对最终路径而言不必要的点,同时使路径更加平滑;结合小生境法以保持种群多样性,避免出现算法早熟现象。仿真结果表明,改进后的算法在路径长度,路径平滑度以及路径困难度方面均有一定的优势,同时算法的收敛速度也略有提高。展开更多
In this paper, a hybrid method based on rough sets and genetic algorithms, is proposed to improve the speed of robot path planning. Decision rules are obtained using rough set theory. A series of available paths are p...In this paper, a hybrid method based on rough sets and genetic algorithms, is proposed to improve the speed of robot path planning. Decision rules are obtained using rough set theory. A series of available paths are produced by training obtained minimal decision rules. Path populations are optimised by using genetic algorithms until the best path is obtained. Experiment results show that this hybrid method is capable of improving robot path planning speed.展开更多
文摘针对在多约束条件下移动机器人在路径规划中搜索效率低、收敛速度慢的缺点,提出多约束条件下基于改进遗传算法的移动机器人路径规划,充分考虑路径长度、平滑度以及困难度这3种因素的影响,通过分析多约束条件下遗传算法在初始化种群时计算方法的不足,提出利用SPS(surrounding point set)算法,通过在障碍物周围生成点来产生初始路径,以提高算法快速生成初始种群的能力;增加平滑算子和删除算子,删除相对最终路径而言不必要的点,同时使路径更加平滑;结合小生境法以保持种群多样性,避免出现算法早熟现象。仿真结果表明,改进后的算法在路径长度,路径平滑度以及路径困难度方面均有一定的优势,同时算法的收敛速度也略有提高。
基金This project is partially supported by Science Research Funding from the Education Department of Liaoning Province, China (No.J9906065).
文摘In this paper, a hybrid method based on rough sets and genetic algorithms, is proposed to improve the speed of robot path planning. Decision rules are obtained using rough set theory. A series of available paths are produced by training obtained minimal decision rules. Path populations are optimised by using genetic algorithms until the best path is obtained. Experiment results show that this hybrid method is capable of improving robot path planning speed.