期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种结合SVM学习的产生式依存分析方法
被引量:
5
1
作者
罗强
奚建清
《中文信息学报》
CSCD
北大核心
2007年第4期21-26,41,共7页
本文提出了一种结合SVM学习和产生式模型的依存分析方法。该方法用产生式模型的分析错误对SVM分类器进行训练。为进一步提高分析精度,采用扩大寻优范围的动态规划算法对产生式模型的分析结果进行错误估计,同时引入范围参数,使得寻优范...
本文提出了一种结合SVM学习和产生式模型的依存分析方法。该方法用产生式模型的分析错误对SVM分类器进行训练。为进一步提高分析精度,采用扩大寻优范围的动态规划算法对产生式模型的分析结果进行错误估计,同时引入范围参数,使得寻优范围可以根据实际情况进行调整。本方法在不牺牲分类性能的前提下,有效减少了训练SVM分类器所依赖的支撑向量数。在对哈工大中文树库语料上的对比测试结果表明,该方法的依存分析精度达到86.4%,具有很强的依存分析能力。
展开更多
关键词
计算机应用
中文信息处理
中文依存分析
产生式概率模型
SVM学习
SMO
动态规划算法
下载PDF
职称材料
题名
一种结合SVM学习的产生式依存分析方法
被引量:
5
1
作者
罗强
奚建清
机构
华南理工大学计算机学院
出处
《中文信息学报》
CSCD
北大核心
2007年第4期21-26,41,共7页
基金
国家"十五"科技攻关计划重点项目(A3480266)
广东省自然科学基金项目(B6480598)
文摘
本文提出了一种结合SVM学习和产生式模型的依存分析方法。该方法用产生式模型的分析错误对SVM分类器进行训练。为进一步提高分析精度,采用扩大寻优范围的动态规划算法对产生式模型的分析结果进行错误估计,同时引入范围参数,使得寻优范围可以根据实际情况进行调整。本方法在不牺牲分类性能的前提下,有效减少了训练SVM分类器所依赖的支撑向量数。在对哈工大中文树库语料上的对比测试结果表明,该方法的依存分析精度达到86.4%,具有很强的依存分析能力。
关键词
计算机应用
中文信息处理
中文依存分析
产生式概率模型
SVM学习
SMO
动态规划算法
Keywords
computer
application
chinese
information
processing
chinese
dependency
analysis
generative
statistical
model
SVM
study
SMO
(Sequential
Minimal
Opeimization)
dynamic
programming
algorithm.
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种结合SVM学习的产生式依存分析方法
罗强
奚建清
《中文信息学报》
CSCD
北大核心
2007
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部