This paper proposes a control strategy that can realize seamless microgrid operation mode transition between grid-connected operation and stand-alone operation.The scenario of a microgrid based on master-slave control...This paper proposes a control strategy that can realize seamless microgrid operation mode transition between grid-connected operation and stand-alone operation.The scenario of a microgrid based on master-slave control is considered,where the master distributed generation(DG) unit operates in different control schemes in different microgrid operation modes,while other slave DG units operate with power/current control all the time.The proposed control strategy focuses on the master DG unit,and contains the control state/reference compensation algorithm and separation switch control logic.The proposed method can effectively reduce the impact on the critical loads and DG units caused by microgrid operation mode transitions.展开更多
The emergence of two dimensional(2D)materials has opened new possibilities for exhibiting second harmonic genera-tion(SHG)at the nanoscale,due to their remarkable optical response related to stable excitons at room te...The emergence of two dimensional(2D)materials has opened new possibilities for exhibiting second harmonic genera-tion(SHG)at the nanoscale,due to their remarkable optical response related to stable excitons at room temperature.However,the ultimate atomic-scale interaction length with light makes the SHG of Transition Metal Dichalcogenides(TM-Ds)monolayers naturally weak.Here,we propose coupling a monolayer of TMDs with a photonic grating slab that works with doubly resonant bound states in the continuum(BIC).The BIC slabs are designed to exhibit a pair of BICs,reson-ant with both the fundamental wave(FW)and the second harmonic wave(SHW).Firstly,the spatial mode matching can be fulfilled by tilting FW's incident angle.We theoretically demonstrate that this strategy leads to more than four orders of magnitude enhancement of SHG efficiency than a sole monolayer of TMDs,under a pump light intensity of 0.1 GW/cm^(2).Moreover,we demonstrate that patterning the TMDs monolayer can further enhance the spatial overlap coefficient,which leads to an extra three orders of magnitude enhancement of SHG efficiency.These results demonstrate remarkable pos-sibilities for enhancing SHG with nonlinear 2D materials,opening many opportunities for chip-based light sources,nano-lasers,imaging,and biochemical sensing.展开更多
We use laser-scanning nonlinear imaging microscopy in atomically thin transition metal dichalcogenides(TMDs)to reveal information on the crystalline orientation distribution,within the 2D lattice.In particular,we perf...We use laser-scanning nonlinear imaging microscopy in atomically thin transition metal dichalcogenides(TMDs)to reveal information on the crystalline orientation distribution,within the 2D lattice.In particular,we perform polarization-resolved second-harmonic generation(PSHG)imaging in a stationary,raster-scanned chemical vapor deposition(CVD)-grown WS2 flake,in order to obtain with high precision a spatially resolved map of the orientation of its main crystallographic axis(armchair orientation).By fitting the experimental PSHG images of sub-micron resolution into a generalized nonlinear model,we are able to determine the armchair orientation for every pixel of the image of the 2D material,with further improved resolution.This pixel-wise mapping of the armchair orientation of 2D WS2 allows us to distinguish between different domains,reveal fine structure,and estimate the crystal orientation variability,which can be used as a unique crystal quality marker over large areas.The necessity and superiority of a polarization-resolved analysis over intensity-only measurements is experimentally demonstrated,while the advantages of PSHG over other techniques are analysed and discussed.展开更多
In nature, quadrupeds as horses or cats change their gait to be suited to their motion speed. This fact is very important to realize smooth motion with different gaits. In this article a method of the gait transition ...In nature, quadrupeds as horses or cats change their gait to be suited to their motion speed. This fact is very important to realize smooth motion with different gaits. In this article a method of the gait transition for the quadruped walking machine is proposed. With analyzing the accustomed gaits of quadruped, some standard gaits and the relationships between duty factor and the phasic differences of the legs corresponding to the first leg could be concluded. With this, the gaits transferring could be continuous. Besides, celerity and on line method for generation and modifying gaits is studied, which can make the robot have a smooth motion to adapt the uncharted rough terrain.展开更多
In this study,thermo-fluid characteristics of elliptical annular finned tube heat exchanger were numerically studied in detail.Transition SST model was utilized to simulate turbulent flow.Effects of air velocities,hor...In this study,thermo-fluid characteristics of elliptical annular finned tube heat exchanger were numerically studied in detail.Transition SST model was utilized to simulate turbulent flow.Effects of air velocities,horizontal to vertical fin diameter ratios,and fin densities were examined in detail.The simulations indicate superior performance of elliptical fin layout.It was shown that pressure drop of annular elliptical fin can be only one half of that of a circular annular fin while containing comparable heat transfer performance.The vertical elliptical annular fin may even contain a higher heat transfer performance over circular fin.Correlations are proposed to estimate the Nu number and pressure drop based on the annular circular fin.The maximum deviations between the proposed correlations and simulations regarding pressure drop and heat transfer coefficient are 5.6%and 3.2%,respectively.For further elaboration of the superiority of the elliptical layout from the second law perspective,normalized entropy generation was also studied.In all cases,the entropy generation rate in circular fin was higher than that of an elliptical fin.展开更多
A laser-diode end-pumped Nd:YVO4 crystal laser is demonstrated to emit the first-order Laguerre- Gaussian (LGm) mode with 502-mW laser power and 22% slope efficiency. Tile LGm-mode is lased only when the pumping ar...A laser-diode end-pumped Nd:YVO4 crystal laser is demonstrated to emit the first-order Laguerre- Gaussian (LGm) mode with 502-mW laser power and 22% slope efficiency. Tile LGm-mode is lased only when the pumping area locates in the central part of the laser crystal's front surface, and thereafter the symmetrical LGm-HGol-TEM00 mode transition happens when laser crystal is moved laterally inside several-tens-micron area. The possible mechanism responsible for the phenomenon of symmetrical mode transition is also discussed.展开更多
The primary objective of this study is to evaluate the accuracy of using computational fluid dynamics (CFD) turbulence models to predict entropy generation rates in bypass transitional boundary layers flows under ze...The primary objective of this study is to evaluate the accuracy of using computational fluid dynamics (CFD) turbulence models to predict entropy generation rates in bypass transitional boundary layers flows under zero and adverse pressure gradients. Entropy generation rates in such flows are evaluated employing the commercial CFD software, ANSYS FLUENT. Various turbulence and transitional models are assessed by comparing their results with the direct numerical simulation (DNS) data and two recent CFD studies. A solution verification study is conducted on three systematically refined meshes. The factor of safety method is used to estimate the numerical error and grid uncertainties. Monotonic convergence is achieved for all simulations. The Reynolds number based on momentum thickness, Reo, skin-friction coefficient, Cf, approximate entropy generation rates, S, dissipation coefficient, Cd , and the intermittency, y, are calculated for bypass transition simulations. All Reynolds averaged Navier-Stokes (RANS) turbulence and transitional models show improvement over previous CFD results in predicting onset of transition. The transition SST k - ω 4 equation model shows closest agreement with DNS data for all flow conditions in this study due to a much finer grid and more accurate inlet boundary conditions. The other RANS models predict an early onset of transition and higher boundary layer entropy generation rates than the DNS shows.展开更多
Phase transition of a lipid-like hemicyanine compound characterized by second harmonic generation is studied carefully. The phase transition is assigned as the first order transition between solid state and liquid sta...Phase transition of a lipid-like hemicyanine compound characterized by second harmonic generation is studied carefully. The phase transition is assigned as the first order transition between solid state and liquid state. The transition temperature increases with an increase in the surface molecular concentration. A monolayer structure parameter a which is very sensitive to the phase transition is introduced.展开更多
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2009CB219700)the National Natural Science Foundation of China (Grant No. 50837001)
文摘This paper proposes a control strategy that can realize seamless microgrid operation mode transition between grid-connected operation and stand-alone operation.The scenario of a microgrid based on master-slave control is considered,where the master distributed generation(DG) unit operates in different control schemes in different microgrid operation modes,while other slave DG units operate with power/current control all the time.The proposed control strategy focuses on the master DG unit,and contains the control state/reference compensation algorithm and separation switch control logic.The proposed method can effectively reduce the impact on the critical loads and DG units caused by microgrid operation mode transitions.
基金financial supports from the National Natural Science Foundation of China(Grant No.11604150)Fundamental Research Funds for the Central Universities of China(Grant No.ZYGX2020J010)M.Rahmani.acknowledges support from the UK Research and Innovation Future Leaders Fellowship(MR/T040513/1)。
文摘The emergence of two dimensional(2D)materials has opened new possibilities for exhibiting second harmonic genera-tion(SHG)at the nanoscale,due to their remarkable optical response related to stable excitons at room temperature.However,the ultimate atomic-scale interaction length with light makes the SHG of Transition Metal Dichalcogenides(TM-Ds)monolayers naturally weak.Here,we propose coupling a monolayer of TMDs with a photonic grating slab that works with doubly resonant bound states in the continuum(BIC).The BIC slabs are designed to exhibit a pair of BICs,reson-ant with both the fundamental wave(FW)and the second harmonic wave(SHW).Firstly,the spatial mode matching can be fulfilled by tilting FW's incident angle.We theoretically demonstrate that this strategy leads to more than four orders of magnitude enhancement of SHG efficiency than a sole monolayer of TMDs,under a pump light intensity of 0.1 GW/cm^(2).Moreover,we demonstrate that patterning the TMDs monolayer can further enhance the spatial overlap coefficient,which leads to an extra three orders of magnitude enhancement of SHG efficiency.These results demonstrate remarkable pos-sibilities for enhancing SHG with nonlinear 2D materials,opening many opportunities for chip-based light sources,nano-lasers,imaging,and biochemical sensing.
文摘We use laser-scanning nonlinear imaging microscopy in atomically thin transition metal dichalcogenides(TMDs)to reveal information on the crystalline orientation distribution,within the 2D lattice.In particular,we perform polarization-resolved second-harmonic generation(PSHG)imaging in a stationary,raster-scanned chemical vapor deposition(CVD)-grown WS2 flake,in order to obtain with high precision a spatially resolved map of the orientation of its main crystallographic axis(armchair orientation).By fitting the experimental PSHG images of sub-micron resolution into a generalized nonlinear model,we are able to determine the armchair orientation for every pixel of the image of the 2D material,with further improved resolution.This pixel-wise mapping of the armchair orientation of 2D WS2 allows us to distinguish between different domains,reveal fine structure,and estimate the crystal orientation variability,which can be used as a unique crystal quality marker over large areas.The necessity and superiority of a polarization-resolved analysis over intensity-only measurements is experimentally demonstrated,while the advantages of PSHG over other techniques are analysed and discussed.
基金Supported by the china postdoctoral Science Foundation (No. 20080430362).
文摘In nature, quadrupeds as horses or cats change their gait to be suited to their motion speed. This fact is very important to realize smooth motion with different gaits. In this article a method of the gait transition for the quadruped walking machine is proposed. With analyzing the accustomed gaits of quadruped, some standard gaits and the relationships between duty factor and the phasic differences of the legs corresponding to the first leg could be concluded. With this, the gaits transferring could be continuous. Besides, celerity and on line method for generation and modifying gaits is studied, which can make the robot have a smooth motion to adapt the uncharted rough terrain.
文摘In this study,thermo-fluid characteristics of elliptical annular finned tube heat exchanger were numerically studied in detail.Transition SST model was utilized to simulate turbulent flow.Effects of air velocities,horizontal to vertical fin diameter ratios,and fin densities were examined in detail.The simulations indicate superior performance of elliptical fin layout.It was shown that pressure drop of annular elliptical fin can be only one half of that of a circular annular fin while containing comparable heat transfer performance.The vertical elliptical annular fin may even contain a higher heat transfer performance over circular fin.Correlations are proposed to estimate the Nu number and pressure drop based on the annular circular fin.The maximum deviations between the proposed correlations and simulations regarding pressure drop and heat transfer coefficient are 5.6%and 3.2%,respectively.For further elaboration of the superiority of the elliptical layout from the second law perspective,normalized entropy generation was also studied.In all cases,the entropy generation rate in circular fin was higher than that of an elliptical fin.
基金supported by the National Natural Science Foundation of China(No.61275206)the National "973" Project of China(No.2014CB921300)
文摘A laser-diode end-pumped Nd:YVO4 crystal laser is demonstrated to emit the first-order Laguerre- Gaussian (LGm) mode with 502-mW laser power and 22% slope efficiency. Tile LGm-mode is lased only when the pumping area locates in the central part of the laser crystal's front surface, and thereafter the symmetrical LGm-HGol-TEM00 mode transition happens when laser crystal is moved laterally inside several-tens-micron area. The possible mechanism responsible for the phenomenon of symmetrical mode transition is also discussed.
基金supported by the U.S. Department of Energy,Office of Science,Basic Energy Sciences,under Award # DE-SC0004751
文摘The primary objective of this study is to evaluate the accuracy of using computational fluid dynamics (CFD) turbulence models to predict entropy generation rates in bypass transitional boundary layers flows under zero and adverse pressure gradients. Entropy generation rates in such flows are evaluated employing the commercial CFD software, ANSYS FLUENT. Various turbulence and transitional models are assessed by comparing their results with the direct numerical simulation (DNS) data and two recent CFD studies. A solution verification study is conducted on three systematically refined meshes. The factor of safety method is used to estimate the numerical error and grid uncertainties. Monotonic convergence is achieved for all simulations. The Reynolds number based on momentum thickness, Reo, skin-friction coefficient, Cf, approximate entropy generation rates, S, dissipation coefficient, Cd , and the intermittency, y, are calculated for bypass transition simulations. All Reynolds averaged Navier-Stokes (RANS) turbulence and transitional models show improvement over previous CFD results in predicting onset of transition. The transition SST k - ω 4 equation model shows closest agreement with DNS data for all flow conditions in this study due to a much finer grid and more accurate inlet boundary conditions. The other RANS models predict an early onset of transition and higher boundary layer entropy generation rates than the DNS shows.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 29425004, 19434012 and 29671001)
文摘Phase transition of a lipid-like hemicyanine compound characterized by second harmonic generation is studied carefully. The phase transition is assigned as the first order transition between solid state and liquid state. The transition temperature increases with an increase in the surface molecular concentration. A monolayer structure parameter a which is very sensitive to the phase transition is introduced.