The existence and multiplicity results are obtained for periodic solutions of second order systems at resonance with unbounded nonlinearity. The proofs rely on the minimax methods and an interesting integral inequality.
为设计性能较好的伪随机数发生器,提出了一个满足修正的马罗驼(Marotto)定理的新二维离散混沌系统(2DCS)。利用离散广义混沌同步理论和2D-CS构造了一个广义同步混沌系统(2D-GCS);通过一个实数域到整数域的变换设计了一个混沌伪随机数生...为设计性能较好的伪随机数发生器,提出了一个满足修正的马罗驼(Marotto)定理的新二维离散混沌系统(2DCS)。利用离散广义混沌同步理论和2D-CS构造了一个广义同步混沌系统(2D-GCS);通过一个实数域到整数域的变换设计了一个混沌伪随机数生成器(CPRNG);利用美国联邦信息处理标准(federal information processing standards,FIPS)提出的FIPS 140-2检测包分别对CPRNG和RC4算法产生的1000个二进制序列的随机性进行检测,结果均通过了检测。检测结果的平均值和方差对比表明CPRNG和RC4算法产生的伪随机序列随机性能相当,相关性检测结果表明该CPRNG在不同的密钥扰动下产生的密钥各组序列几乎完全独立,设计的CPRNG能产生性能良好的伪随机数。展开更多
The existence of solutions is obtained for a class of the non-periodic SchrSdinger equation -△u + V(x)u = f(x,u), x E RN, by the generalized mountain pass theorem, where V is large at infinity and f is superline...The existence of solutions is obtained for a class of the non-periodic SchrSdinger equation -△u + V(x)u = f(x,u), x E RN, by the generalized mountain pass theorem, where V is large at infinity and f is superlinear as |u|→ ∞.展开更多
文摘The existence and multiplicity results are obtained for periodic solutions of second order systems at resonance with unbounded nonlinearity. The proofs rely on the minimax methods and an interesting integral inequality.
文摘为设计性能较好的伪随机数发生器,提出了一个满足修正的马罗驼(Marotto)定理的新二维离散混沌系统(2DCS)。利用离散广义混沌同步理论和2D-CS构造了一个广义同步混沌系统(2D-GCS);通过一个实数域到整数域的变换设计了一个混沌伪随机数生成器(CPRNG);利用美国联邦信息处理标准(federal information processing standards,FIPS)提出的FIPS 140-2检测包分别对CPRNG和RC4算法产生的1000个二进制序列的随机性进行检测,结果均通过了检测。检测结果的平均值和方差对比表明CPRNG和RC4算法产生的伪随机序列随机性能相当,相关性检测结果表明该CPRNG在不同的密钥扰动下产生的密钥各组序列几乎完全独立,设计的CPRNG能产生性能良好的伪随机数。
基金Supported by National Natural Science Foundation of China(11071198)Doctor Research Foundation of Southwest University of Science and Technology (11zx7130)the Key Project in Science and Technology Research Plan of the Education Department of Hubei Province(D20112605)
文摘The existence of solutions is obtained for a class of the non-periodic SchrSdinger equation -△u + V(x)u = f(x,u), x E RN, by the generalized mountain pass theorem, where V is large at infinity and f is superlinear as |u|→ ∞.