Let U = Tri(fit, M, B) be a triangular ring, where A and B are unital rings, and M is a faithful (A, B)-bimodule. It is shown that an additive map φ on U is centralized at zero point (i.e., ,φ(A)B = A,φ(B)...Let U = Tri(fit, M, B) be a triangular ring, where A and B are unital rings, and M is a faithful (A, B)-bimodule. It is shown that an additive map φ on U is centralized at zero point (i.e., ,φ(A)B = A,φ(B) = 0 whenever AB = 0) if and only if it is a centralizer. Let 5 : U →U be an additive map. It is also shown that the following four conditions are equivalent: (1) 5 is specially generalized derivable at zero point, i.e., 5(AB) = δ(A)B + AS(B) - Aδ(I)B whenever AB = 0; (2) 5 is generalized derivable at zero point, i.e., there exist additive maps τ1 and τ2 on U derivable at zero point such that δ(AB) = δ(A)B + Aτ1(B) = τ2(A)B + Aδ(B) whenever AB = 0; (3) δ is a special generalized derivation; (4) δ is a generalized derivation. These results are then applied to nest algebras of Banach space展开更多
We introduce and investigate the properties of a generalization of the derivation of dendriform algebras. We specify all possible parameter values for the generalized derivations, which depend on parameters. We provid...We introduce and investigate the properties of a generalization of the derivation of dendriform algebras. We specify all possible parameter values for the generalized derivations, which depend on parameters. We provide all generalized derivations for complex low-dimensional dendriform algebras.展开更多
Let P be a parabolic subalgebra of a general linear Lie algebra gl(n,F) over a field F, where n ≥ 3, F contains at least n different elements, and char(F) ≠ 2. In this article, we prove that generalized derivati...Let P be a parabolic subalgebra of a general linear Lie algebra gl(n,F) over a field F, where n ≥ 3, F contains at least n different elements, and char(F) ≠ 2. In this article, we prove that generalized derivations, quasiderivations, and product zero derivations of P coincide, and any generalized derivation of P is a sum of an inner derivation, a central quasiderivation, and a scalar multiplication map of P. We also show that any commuting automorphism of P is a central automorphism, and any commuting derivation of P is a central derivation.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 11101250)supported by National Natural Science Foundation of China (Grant No. 11171249)Youth Foundation of Shanxi Province (Grant No. 2012021004)
文摘Let U = Tri(fit, M, B) be a triangular ring, where A and B are unital rings, and M is a faithful (A, B)-bimodule. It is shown that an additive map φ on U is centralized at zero point (i.e., ,φ(A)B = A,φ(B) = 0 whenever AB = 0) if and only if it is a centralizer. Let 5 : U →U be an additive map. It is also shown that the following four conditions are equivalent: (1) 5 is specially generalized derivable at zero point, i.e., 5(AB) = δ(A)B + AS(B) - Aδ(I)B whenever AB = 0; (2) 5 is generalized derivable at zero point, i.e., there exist additive maps τ1 and τ2 on U derivable at zero point such that δ(AB) = δ(A)B + Aτ1(B) = τ2(A)B + Aδ(B) whenever AB = 0; (3) δ is a special generalized derivation; (4) δ is a generalized derivation. These results are then applied to nest algebras of Banach space
文摘We introduce and investigate the properties of a generalization of the derivation of dendriform algebras. We specify all possible parameter values for the generalized derivations, which depend on parameters. We provide all generalized derivations for complex low-dimensional dendriform algebras.
基金supported by the National Natural Science Foundation of China(11101084,11071040)the Fujian Province Nature Science Foundation of China(2013J01005)
文摘Let P be a parabolic subalgebra of a general linear Lie algebra gl(n,F) over a field F, where n ≥ 3, F contains at least n different elements, and char(F) ≠ 2. In this article, we prove that generalized derivations, quasiderivations, and product zero derivations of P coincide, and any generalized derivation of P is a sum of an inner derivation, a central quasiderivation, and a scalar multiplication map of P. We also show that any commuting automorphism of P is a central automorphism, and any commuting derivation of P is a central derivation.