期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
THE MEAN VALUE THEOREM AND CONVERSE THEOREM OF ONE CLASS THE FOURTH-ORDER PARTIAL DIFFERENTIAL EQUATIONS
1
作者 同小军 同登科 陈绵云 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第6期717-723,共7页
For the formal presentation about the definite problems of ultra-hyperbolic equations, the famous Asgeirsson mean value theorem has answered that Cauchy problems are ill-posed to ultra-hyperbolic partial differential ... For the formal presentation about the definite problems of ultra-hyperbolic equations, the famous Asgeirsson mean value theorem has answered that Cauchy problems are ill-posed to ultra-hyperbolic partial differential equations of the second-order. So it is important to develop Asgeirsson mean value theorem. The mean value of solution for the higher order equation hay been discussed primarily and has no exact result at present. The mean value theorem for the higher order equation can be deduced and satisfied generalized biaxial symmetry potential equation by using the result of Asgeirsson mean value theorem and the properties of derivation and integration. Moreover, the mean value formula can be obtained by using the regular solutions of potential equation and the special properties of Jacobi polynomials. Its converse theorem is also proved. The obtained results make it possible to discuss on continuation of the solutions and well posed problem. 展开更多
关键词 Asgeirsson mean value theorem generalized biaxial symmetry potential equation Jacobi polynomials
下载PDF
一类高阶超双曲型方程的中量定理及其逆定理 被引量:1
2
作者 同小军 同登科 陈绵云 《应用数学和力学》 EI CSCD 北大核心 2001年第6期639-644,共6页
Asgeirsson中量定理表明超双曲型方程的Cauchy问题一般是不适定的 ,对Asgeirsson中量定理的推广就有重要意义· 目前关于高阶方程解的中量只有初步探讨 ,尚未得到具体结果 ,本文直接利用Asgeirsson中量定理结果和积分、微分的性质... Asgeirsson中量定理表明超双曲型方程的Cauchy问题一般是不适定的 ,对Asgeirsson中量定理的推广就有重要意义· 目前关于高阶方程解的中量只有初步探讨 ,尚未得到具体结果 ,本文直接利用Asgeirsson中量定理结果和积分、微分的性质与关系 ,得到了高阶方程解的中量满足广义双轴对称位势方程 ,同时还证明了其逆定理· 利用关于广义双轴对称位势方程正则解的表达式及雅可比多项式的特殊性质 ,得到了高阶方程解的中量公式 ,从而使得关于解的拓展性和适定性的讨论将有可能· 展开更多
关键词 Assirsson中量定理 广义双轴对称位势方程 雅可比多项式 双曲型 方程 CAUCHY问题
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部