为了对齿轮轴系进行减振降噪,提出了一种新型integral squeeze film damper(ISFD)弹性阻尼支撑结构。设计并加工了4套实验用ISFD弹性阻尼支撑结构,搭建了开式一级直齿轮实验台,并通过对比主、从动轴分别安装刚性支撑、弹性支撑及弹性阻...为了对齿轮轴系进行减振降噪,提出了一种新型integral squeeze film damper(ISFD)弹性阻尼支撑结构。设计并加工了4套实验用ISFD弹性阻尼支撑结构,搭建了开式一级直齿轮实验台,并通过对比主、从动轴分别安装刚性支撑、弹性支撑及弹性阻尼支撑后轴系的振动幅值,来验证其减振降噪效果。实验结果表明,该ISFD弹性阻尼支撑结构能够较好地改善齿轮啮合的冲击振动,并对齿轮啮合传动中大部分频率成分的振动都有良好的减振效果,平均降幅达50%以上,并且减振频带宽。展开更多
Misalignment faults in gear systems lead to violent vibration and noise, shortening the life of equipment. The aim of this work is the demonstration of vibration suppression of parallel-misaligned gear shafts using an...Misalignment faults in gear systems lead to violent vibration and noise, shortening the life of equipment. The aim of this work is the demonstration of vibration suppression of parallel-misaligned gear shafts using an integral squeeze film damper(ISFD). Using a first grade spur gear in engineering for reference, an open first-grade spur gear system is built and the vibration characteristics of the gear system with rigid supports and ISFD elastic damping supports are studied under different degrees of misalignment. The experimental results show that ISFD supports have excellent damping and vibration attenuation characteristics, which have improved control of the gear system vibration in horizontal, vertical and axial directions under different degrees of misalignment. This work shows that an ISFD structure can effectively suppress vibration of characteristic frequency components and resonance modulation frequency components. The test results provide evidence for the application of ISFD in vibration control of gear shaft misalignment faults in engineering.展开更多
文摘为了对齿轮轴系进行减振降噪,提出了一种新型integral squeeze film damper(ISFD)弹性阻尼支撑结构。设计并加工了4套实验用ISFD弹性阻尼支撑结构,搭建了开式一级直齿轮实验台,并通过对比主、从动轴分别安装刚性支撑、弹性支撑及弹性阻尼支撑后轴系的振动幅值,来验证其减振降噪效果。实验结果表明,该ISFD弹性阻尼支撑结构能够较好地改善齿轮啮合的冲击振动,并对齿轮啮合传动中大部分频率成分的振动都有良好的减振效果,平均降幅达50%以上,并且减振频带宽。
基金Supported by the National Basic Research Program of China(No.2012CB026000)2015 Beijing Scientific Research and Graduate Training Project(No.0318-21510028008)Key Laboratory Fund for Ship Vibration and Noise(No.614220406020717)
文摘Misalignment faults in gear systems lead to violent vibration and noise, shortening the life of equipment. The aim of this work is the demonstration of vibration suppression of parallel-misaligned gear shafts using an integral squeeze film damper(ISFD). Using a first grade spur gear in engineering for reference, an open first-grade spur gear system is built and the vibration characteristics of the gear system with rigid supports and ISFD elastic damping supports are studied under different degrees of misalignment. The experimental results show that ISFD supports have excellent damping and vibration attenuation characteristics, which have improved control of the gear system vibration in horizontal, vertical and axial directions under different degrees of misalignment. This work shows that an ISFD structure can effectively suppress vibration of characteristic frequency components and resonance modulation frequency components. The test results provide evidence for the application of ISFD in vibration control of gear shaft misalignment faults in engineering.