Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive ...Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive with nano-level size,lower power consumption,and accurate response.However,few of them has the capability of impulse detection which is a path function,expressing the cumulative effect of the force on the particle over a period of time.Herein we fabricated the flexible polymethyl methacrylate(PMMA)gate dielectric MoS_(2)-FET for force and impulse sensor application.We systematically investigated the responses of the sensor to constant force and varying forces,and achieved the conversion factors of the drain current signals(I_(ds))to the detected impulse(I).The applied force was detected and recorded by I_(ds)with a low power consumption of~30 nW.The sensitivity of the device can reach~8000%and the 4×1 sensor array is able to detect and locate the normal force applied on it.Moreover,there was almost no performance loss for the device as left in the air for two months.展开更多
In this paper, we explore the electrical characteristics of high-electron-mobility transistors(HEMTs) using a TaN/AlGaN/GaN metal insulating semiconductor(MIS) structure. The high-resistance tantalum nitride(TaN) film...In this paper, we explore the electrical characteristics of high-electron-mobility transistors(HEMTs) using a TaN/AlGaN/GaN metal insulating semiconductor(MIS) structure. The high-resistance tantalum nitride(TaN) film prepared by magnetron sputtering as the gate dielectric layer of the device achieved an effective reduction of electronic states at the TaN/AlGaN interface, and reducing the gate leakage current of the MIS HEMT, its performance was enhanced. The HEMT exhibited a low gate leakage current of 2.15 × 10^(-7) mA/mm and a breakdown voltage of 1180 V. Furthermore, the MIS HEMT displayed exceptional operational stability during dynamic tests, with dynamic resistance remaining only 1.39 times even under 400 V stress.展开更多
We employ the Ta2Os/PVP (poly-4-vinylphenol) double-layer gate insulator to improve the performance of pentacene thin-film transistors. It is found that the double-layer insulator has low leakage current, smooth sur...We employ the Ta2Os/PVP (poly-4-vinylphenol) double-layer gate insulator to improve the performance of pentacene thin-film transistors. It is found that the double-layer insulator has low leakage current, smooth surface and considerably high capacitance. Compared to Ta205 insulator layers, the device with the Ta2Os/PVP doublelayer insulator exhibits an enhancement of the field-effect mobility from 0.21 to 0.54 cm2/Vs, and the decreasing threshold voltage from 4.38 V to -2.5 V. The results suggest that the Ta2Os/PVP double-layer insulator is a potential gate insulator for fabricating OTFTs with good electrical performance.展开更多
An A1GaN/GaN recessed-gate MOSHEMT was fabricated on a sapphire substrate. The device, which has a gate length of 1μm and a source-drain distance of 4μm, exhibits a maximum drain current density of 684mA/mrn at Vgs ...An A1GaN/GaN recessed-gate MOSHEMT was fabricated on a sapphire substrate. The device, which has a gate length of 1μm and a source-drain distance of 4μm, exhibits a maximum drain current density of 684mA/mrn at Vgs = 4V with an extrinsic transconductance of 219 mS/mm. This is 24.3% higher than the transconductance of conventional A1GaN/GaN HEMTs. The cut-off frequency and the maximum frequency of oscillation are 9.2 GHz and 14.1 GHz, respectively. Furthermore, the gate leakage current is two orders of magnitude lower than for the conventional Schottky contact device.展开更多
In order to achieve a super gate dielectric performance,rare earth oxides featuring for large band gap,good thermodynamic stability and relatively high k value were selected to be laminated with TiO_(2)film to prepare...In order to achieve a super gate dielectric performance,rare earth oxides featuring for large band gap,good thermodynamic stability and relatively high k value were selected to be laminated with TiO_(2)film to prepare bilayer dielectric films.As an example,the microstructure,morphology,band gap structure and electrical performance of TiO_(2)-Y_(2)O_(3)bilayer films were systematically investigated.Results show that stacking sequence of TiO_(2)and Y_(2)O_(3)sublayers has a significant impact on the dielectric performance and Y_(2)O_(3)film as a passivation layer can effectively improve electrical properties.Besides,the electrical behaviors analysis of TiO_(2)-Y_(2)O_(3),Y_(2)O_(3)-TiO_(2),Y_(2)O_(3)and TiO_(2)samples was carried out by impedance spectra and equivale nt circuit.The result shows that TiO_(2)-Y_(2)O_(3)/Si sample holds the largest internal re sistance of 74665Ωamong four samples.Moreover,the most outstanding properties of Pt/TiO_(2)-Y_(2)O_(3)/Si capacitor are achieved by varying the thickness of sublayers and annealing temperature.500℃-annealed bilayer film with 17 nm-TiO_(2)and 3-nm Y_(2)O_(3)displays a k value of 28.24,which is more than 1.4 times that of current commercial HfO_(2).Further,Schottky emission was determined to be leakage current transport mechanism for TiO_(2)-Y_(2)O_(3)bilayer films.Inspired by this result,the electrical performance of more general Pt/TiO_(2)-REOs/Si MOS capacitors(RE=Sc,La,Ce,Gd and Pr)was measured.The combination of TiO_(2)film and REOs passivation layer with the satisfying performance provides promising candidates for future Si-based integrated circuit(IC).展开更多
The MOSFET gate currents of high k gate dielectrics due to direct tunneling are investigated by using a new direct tunneling current model developed.The model includes both the inversion layer quantization effect with...The MOSFET gate currents of high k gate dielectrics due to direct tunneling are investigated by using a new direct tunneling current model developed.The model includes both the inversion layer quantization effect with finite barrier height and the polysilicon depletion effect.The impacts of dielectric constant and conduction band offset as well as the band gap on the gate current are discussed.The results indicate that the gate dielectric materials with higher dielectric constant,larger conduction band offset and the larger band gap are necessary to reduce the gate current.The calculated results can be used as a guide to select the appropriate high k gate dielectric materials for MOSFETs.展开更多
文摘随着微电子技术的不断发展,MOSFET 的特征尺寸已缩小至100nm 以下,SiO_2作为栅介质材料已不能满足技术发展的需求,因此必须寻求一种新型高 K 的介质材料来取代 SiO_2。当今普遍认为 Hf 基栅介质材料是最有希望取代 SiO_2而成为下一代 MOSFET 的栅介质材料。综述了高 K 栅介质材料的意义、Hf 基高 K 栅介质材料的最新研究进展和 Hf 基高 K 栅介质材料在克服自身缺陷时使用的一些技术;介绍了一款由 Hf 基高 K 介质材料作为栅绝缘层制作的 MOSFET。
基金financially supported by the National Natural Science Foundation of China(Nos.52272160,U2330112,and 52002254)Sichuan Science and Technology Foundation(Nos.2020YJ0262,2021YFH0127,2022YFH0083,2022YFSY0045,and 2023YFSY0002)+1 种基金the Chunhui Plan of Ministry of Education,Fundamental Research Funds for the Central Universities,China(No.YJ201893)the Foundation of Key Laboratory of Lidar and Device,Sichuan Province,China(No.LLD2023-006)。
文摘Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive with nano-level size,lower power consumption,and accurate response.However,few of them has the capability of impulse detection which is a path function,expressing the cumulative effect of the force on the particle over a period of time.Herein we fabricated the flexible polymethyl methacrylate(PMMA)gate dielectric MoS_(2)-FET for force and impulse sensor application.We systematically investigated the responses of the sensor to constant force and varying forces,and achieved the conversion factors of the drain current signals(I_(ds))to the detected impulse(I).The applied force was detected and recorded by I_(ds)with a low power consumption of~30 nW.The sensitivity of the device can reach~8000%and the 4×1 sensor array is able to detect and locate the normal force applied on it.Moreover,there was almost no performance loss for the device as left in the air for two months.
基金supported by the National Natural Science Foundation of China(Grant No.1237310)The Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2020321)+1 种基金the National Natural Science Foundation of China(Grant No.92163204)The Key Research and Development Program of Jiangsu Province(Grant No.BE2022057-1)。
文摘In this paper, we explore the electrical characteristics of high-electron-mobility transistors(HEMTs) using a TaN/AlGaN/GaN metal insulating semiconductor(MIS) structure. The high-resistance tantalum nitride(TaN) film prepared by magnetron sputtering as the gate dielectric layer of the device achieved an effective reduction of electronic states at the TaN/AlGaN interface, and reducing the gate leakage current of the MIS HEMT, its performance was enhanced. The HEMT exhibited a low gate leakage current of 2.15 × 10^(-7) mA/mm and a breakdown voltage of 1180 V. Furthermore, the MIS HEMT displayed exceptional operational stability during dynamic tests, with dynamic resistance remaining only 1.39 times even under 400 V stress.
基金Supported by the National Natural Science Foundation of China under Grant No 50573039, the Specialized Research Fund for the Doctoral Programme of Higher Education of China under Grant No 20060003085, and the National Key Basic Research Programme of China under Grant No 2002CB613405.
文摘We employ the Ta2Os/PVP (poly-4-vinylphenol) double-layer gate insulator to improve the performance of pentacene thin-film transistors. It is found that the double-layer insulator has low leakage current, smooth surface and considerably high capacitance. Compared to Ta205 insulator layers, the device with the Ta2Os/PVP doublelayer insulator exhibits an enhancement of the field-effect mobility from 0.21 to 0.54 cm2/Vs, and the decreasing threshold voltage from 4.38 V to -2.5 V. The results suggest that the Ta2Os/PVP double-layer insulator is a potential gate insulator for fabricating OTFTs with good electrical performance.
基金supported by the National Natural Science Foundation of China(No.60736033)the Xi'an Applied Materials Innovation Fund(No.XA-AM-200616)
文摘An A1GaN/GaN recessed-gate MOSHEMT was fabricated on a sapphire substrate. The device, which has a gate length of 1μm and a source-drain distance of 4μm, exhibits a maximum drain current density of 684mA/mrn at Vgs = 4V with an extrinsic transconductance of 219 mS/mm. This is 24.3% higher than the transconductance of conventional A1GaN/GaN HEMTs. The cut-off frequency and the maximum frequency of oscillation are 9.2 GHz and 14.1 GHz, respectively. Furthermore, the gate leakage current is two orders of magnitude lower than for the conventional Schottky contact device.
基金supported by the China Postdoctoral Science Foundation (BX20200004)the National Key R&D Program of China (2017YFB0405902)the National Natural Science Foundation of China (51971004)。
文摘In order to achieve a super gate dielectric performance,rare earth oxides featuring for large band gap,good thermodynamic stability and relatively high k value were selected to be laminated with TiO_(2)film to prepare bilayer dielectric films.As an example,the microstructure,morphology,band gap structure and electrical performance of TiO_(2)-Y_(2)O_(3)bilayer films were systematically investigated.Results show that stacking sequence of TiO_(2)and Y_(2)O_(3)sublayers has a significant impact on the dielectric performance and Y_(2)O_(3)film as a passivation layer can effectively improve electrical properties.Besides,the electrical behaviors analysis of TiO_(2)-Y_(2)O_(3),Y_(2)O_(3)-TiO_(2),Y_(2)O_(3)and TiO_(2)samples was carried out by impedance spectra and equivale nt circuit.The result shows that TiO_(2)-Y_(2)O_(3)/Si sample holds the largest internal re sistance of 74665Ωamong four samples.Moreover,the most outstanding properties of Pt/TiO_(2)-Y_(2)O_(3)/Si capacitor are achieved by varying the thickness of sublayers and annealing temperature.500℃-annealed bilayer film with 17 nm-TiO_(2)and 3-nm Y_(2)O_(3)displays a k value of 28.24,which is more than 1.4 times that of current commercial HfO_(2).Further,Schottky emission was determined to be leakage current transport mechanism for TiO_(2)-Y_(2)O_(3)bilayer films.Inspired by this result,the electrical performance of more general Pt/TiO_(2)-REOs/Si MOS capacitors(RE=Sc,La,Ce,Gd and Pr)was measured.The combination of TiO_(2)film and REOs passivation layer with the satisfying performance provides promising candidates for future Si-based integrated circuit(IC).
文摘The MOSFET gate currents of high k gate dielectrics due to direct tunneling are investigated by using a new direct tunneling current model developed.The model includes both the inversion layer quantization effect with finite barrier height and the polysilicon depletion effect.The impacts of dielectric constant and conduction band offset as well as the band gap on the gate current are discussed.The results indicate that the gate dielectric materials with higher dielectric constant,larger conduction band offset and the larger band gap are necessary to reduce the gate current.The calculated results can be used as a guide to select the appropriate high k gate dielectric materials for MOSFETs.