The partition coefficients between particulate and gas phases (Kp) for organic pollutants are of great importance to characterize the behavior of organic pollutants in atmosphere, and are basic data needed by ecologic...The partition coefficients between particulate and gas phases (Kp) for organic pollutants are of great importance to characterize the behavior of organic pollutants in atmosphere, and are basic data needed by ecological risk assessment. Partial least squares (PLS) regression with 16 theoretical molecular structural descriptors was used to develop polyparameter linear free energy relationship (LFER) model for Kp of 18 aliphatic hydrocarbons, 21 polycyclic aromatic hydrocarbons (PAHs), 16 polychlorinated biphenyls (PCBs) and 13 polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs). The obtained model has a good predictive ability and robustness, which can be used for estimating Kp of chemicals with similar structures. Intermolecular dispersive interactions play a leading role in governing Kp, fol-lowed by charge-transfer interactions and hindrance effects of molecular size. The respective models developed for different group compounds imply that the action mechanism is similar, and dipole-dipole and dipole-induced dipole interactions play a minor role in governing Kp of n-alkanes, PCBs and PCDD/Fs.展开更多
基金the National Basic Research Program of China (Grant No. 2004CB418504)the Key Laboratory of Industrial Ecology and Environmental Engineering, MOE
文摘The partition coefficients between particulate and gas phases (Kp) for organic pollutants are of great importance to characterize the behavior of organic pollutants in atmosphere, and are basic data needed by ecological risk assessment. Partial least squares (PLS) regression with 16 theoretical molecular structural descriptors was used to develop polyparameter linear free energy relationship (LFER) model for Kp of 18 aliphatic hydrocarbons, 21 polycyclic aromatic hydrocarbons (PAHs), 16 polychlorinated biphenyls (PCBs) and 13 polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs). The obtained model has a good predictive ability and robustness, which can be used for estimating Kp of chemicals with similar structures. Intermolecular dispersive interactions play a leading role in governing Kp, fol-lowed by charge-transfer interactions and hindrance effects of molecular size. The respective models developed for different group compounds imply that the action mechanism is similar, and dipole-dipole and dipole-induced dipole interactions play a minor role in governing Kp of n-alkanes, PCBs and PCDD/Fs.