To predict aeroheating performance of hypersonic vehicles accurately in thermochemical nonequilibrium flows accompanied by rarefaction effect,a Nonlinear Coupled Constitutive Relations(NCCR)model coupled with Gupta’s...To predict aeroheating performance of hypersonic vehicles accurately in thermochemical nonequilibrium flows accompanied by rarefaction effect,a Nonlinear Coupled Constitutive Relations(NCCR)model coupled with Gupta’s chemical models and Park’s two-temperature model is firstly proposed in this paper.Three typical cases are intensively investigated for further validation,including hypersonic flows over a two-dimensional cylinder,a RAM-C II flight vehicle and a type HTV-2 flight vehicle.The results predicted by NCCR solution,such as heat flux coefficient and electron number densities,are in better agreement with those of direct simulation Monte Carlo or flight data than Navier-Stokes equations,especially in the extremely nonequilibrium regions,which indicates the potential of the newly-developed solution to capture both thermochemical and rarefied nonequilibrium effects.The comparisons between the present solver and NCCR model without a two-temperature model are also conducted to demonstrate the significance of vibrational energy source term in the accurate simulation of high-Mach flows.展开更多
Two-dimensional(2D)nanomaterials have been widely used in gas sensing due to their large specific surface area,high surface reactivity,and excellent gas adsorption properties.This paper reviews the typical synthesis m...Two-dimensional(2D)nanomaterials have been widely used in gas sensing due to their large specific surface area,high surface reactivity,and excellent gas adsorption properties.This paper reviews the typical synthesis methods of various types of 2D nanomaterials and summarizes the recent progress in gas sensors based on 2D materials,such as noble metal nanoparticles(NPs),metal oxides(MOS),conductive polymers,other new 2D materials.The methods of doping,modification,and photoexcitation can effectively improve the gas-sensing properties of 2D materials.The sensitive mechanisms of heterojunction,Schottky junction,and photoexcitation in 2D material sensors are discussed in detail.This paper discusses the application prospects of 2D materials in wearable gas sensors,food safety,and self-powered sensing,and provides ideas for further applications in environmental quality monitoring and disease diagnosis.In addition,the opportunities and challenges for gas sensors based on 2D materials are also discussed.展开更多
A gas-liquid coupling excitation mode is proposed and the gas-liquid excitation experimental system is developed. Air from pulse generator is mixed with liquid,through which the generated cavitation bubbles can strip ...A gas-liquid coupling excitation mode is proposed and the gas-liquid excitation experimental system is developed. Air from pulse generator is mixed with liquid,through which the generated cavitation bubbles can strip contaminants adhered to the pipe inner wall rapidly. The kinematics equation of the bubble inside the hydraulic oil is established and the numerical simulations are carried out. The influential factors such as gas pressure, excitation frequency,initial bubble radius and fluid viscosity are analyzed.The results show that the cavitation will evolve from steady state to transient state with the increasing gas pressure and initial bubble radius. The pulse generator frequency has a slightly effect on the growth of the bubble radius,and the breakup time of the bubble is shortened with the rising frequency. Similarly, the increasing viscosity of liquid has minimal impact on cavitation effect,which can weaken the growth and the collapse of the bubble. Moreover,the temperature inside the cavitation bubble is investigated,indicating that the instantaneous temperature inside the bubble increases with the rising gas pressure. Once the gas pressure is raised to a certain value greater than the fluid static pressure, the instantaneous temperature inside the bubble will rise sharply. So, it can be concluded that the gas-liquid coupling excitation-induced cavitation process is controllable, and some theoretical basis of the new excitation mode is presented,which is expected to be applied in the online cleaning of the complex hydraulic system.展开更多
基金financially co-supported by the National Natural Science Foundation of China(Nos.12002306,U20B2007,11572284 and 6162790014)National Numerical Wind Tunnel Project,China(No.NNW2019ZT3-A08)。
文摘To predict aeroheating performance of hypersonic vehicles accurately in thermochemical nonequilibrium flows accompanied by rarefaction effect,a Nonlinear Coupled Constitutive Relations(NCCR)model coupled with Gupta’s chemical models and Park’s two-temperature model is firstly proposed in this paper.Three typical cases are intensively investigated for further validation,including hypersonic flows over a two-dimensional cylinder,a RAM-C II flight vehicle and a type HTV-2 flight vehicle.The results predicted by NCCR solution,such as heat flux coefficient and electron number densities,are in better agreement with those of direct simulation Monte Carlo or flight data than Navier-Stokes equations,especially in the extremely nonequilibrium regions,which indicates the potential of the newly-developed solution to capture both thermochemical and rarefied nonequilibrium effects.The comparisons between the present solver and NCCR model without a two-temperature model are also conducted to demonstrate the significance of vibrational energy source term in the accurate simulation of high-Mach flows.
基金the National Natural Science Foundation of China(No.51777215)the Original Innovation Special Project of Science and Technology Plan of Qingdao West Coast New Area(No.2020-85)the Special Foundation of the Taishan Scholar Project.
文摘Two-dimensional(2D)nanomaterials have been widely used in gas sensing due to their large specific surface area,high surface reactivity,and excellent gas adsorption properties.This paper reviews the typical synthesis methods of various types of 2D nanomaterials and summarizes the recent progress in gas sensors based on 2D materials,such as noble metal nanoparticles(NPs),metal oxides(MOS),conductive polymers,other new 2D materials.The methods of doping,modification,and photoexcitation can effectively improve the gas-sensing properties of 2D materials.The sensitive mechanisms of heterojunction,Schottky junction,and photoexcitation in 2D material sensors are discussed in detail.This paper discusses the application prospects of 2D materials in wearable gas sensors,food safety,and self-powered sensing,and provides ideas for further applications in environmental quality monitoring and disease diagnosis.In addition,the opportunities and challenges for gas sensors based on 2D materials are also discussed.
基金National Natural Science Foundation of China(No.U1404513)
文摘A gas-liquid coupling excitation mode is proposed and the gas-liquid excitation experimental system is developed. Air from pulse generator is mixed with liquid,through which the generated cavitation bubbles can strip contaminants adhered to the pipe inner wall rapidly. The kinematics equation of the bubble inside the hydraulic oil is established and the numerical simulations are carried out. The influential factors such as gas pressure, excitation frequency,initial bubble radius and fluid viscosity are analyzed.The results show that the cavitation will evolve from steady state to transient state with the increasing gas pressure and initial bubble radius. The pulse generator frequency has a slightly effect on the growth of the bubble radius,and the breakup time of the bubble is shortened with the rising frequency. Similarly, the increasing viscosity of liquid has minimal impact on cavitation effect,which can weaken the growth and the collapse of the bubble. Moreover,the temperature inside the cavitation bubble is investigated,indicating that the instantaneous temperature inside the bubble increases with the rising gas pressure. Once the gas pressure is raised to a certain value greater than the fluid static pressure, the instantaneous temperature inside the bubble will rise sharply. So, it can be concluded that the gas-liquid coupling excitation-induced cavitation process is controllable, and some theoretical basis of the new excitation mode is presented,which is expected to be applied in the online cleaning of the complex hydraulic system.