We consider some classes of generalized gap functions for two kinds of generalized variational inequality problems. We obtain error bounds for the underlying variational inequalities using the generalized gap function...We consider some classes of generalized gap functions for two kinds of generalized variational inequality problems. We obtain error bounds for the underlying variational inequalities using the generalized gap functions under the condition that the involved mapping F is g-strongly monotone with respect to the solution, but not necessarily continuous differentiable, even not locally Lipschitz.展开更多
We generalize the D-gap function developed in the literature for variational inequalities to a general equilibrium problem (EP). Through the D-gap function, the equilibrium problem is cast as an unconstrained minimi...We generalize the D-gap function developed in the literature for variational inequalities to a general equilibrium problem (EP). Through the D-gap function, the equilibrium problem is cast as an unconstrained minimization problem. We give conditions under which any stationary point of the D-gap function is a solution of EP and conditions under which it provides a global error bound for EP. Finally, these results are applied to box-constrained EP and then weaker conditions are established to obtain the desired results for box-constrained EP.展开更多
基金supported by the National Natural Science Foundation of China (No. 10671050)the Natural Science Foundation of Heilongjiang Province of China (No. A200607)
文摘We consider some classes of generalized gap functions for two kinds of generalized variational inequality problems. We obtain error bounds for the underlying variational inequalities using the generalized gap functions under the condition that the involved mapping F is g-strongly monotone with respect to the solution, but not necessarily continuous differentiable, even not locally Lipschitz.
基金supported by the National Natural Science Foundation of China (Grant No. 10871113,10671013)
文摘We generalize the D-gap function developed in the literature for variational inequalities to a general equilibrium problem (EP). Through the D-gap function, the equilibrium problem is cast as an unconstrained minimization problem. We give conditions under which any stationary point of the D-gap function is a solution of EP and conditions under which it provides a global error bound for EP. Finally, these results are applied to box-constrained EP and then weaker conditions are established to obtain the desired results for box-constrained EP.