In nature, to realize the smooth motion for different speeds, the continuous gait transition is usually required for the quadrupeds. Thus, the gait simulation of quadrupeds is a requisite step to obtain the stable and...In nature, to realize the smooth motion for different speeds, the continuous gait transition is usually required for the quadrupeds. Thus, the gait simulation of quadrupeds is a requisite step to obtain the stable and energy-efficient gait for the walking machines. In this paper, the definitions of the two gait parameters, phasic difference and duty factor are presented, which can determine the gait of the quadrupeds. Then, several typical gaits of the quadrupeds are analyzed such that the seven standard gaits and corresponding parameters are summarized. Additionally, the variance law of the two parameters, which determine the relationship of gait transition, is analyzed. Furthermore, the quadruped gait derivative spectrum (QGDS) is proposed and the gait definition of the quadrupeds is presented. To minimize the power consumption, the choice criterion of gait, the optimal gait in terms of the motion speed, duty factory, and power consumption for the walking machines, is developed. Last, the continuous variance of the gait is implemented by the simulation of the gait transition from walk to trot, which evaluate the choice criterion and transition of gait.展开更多
Quadruped animals in the nature realize high energy efficiency locomotion by automatically changing their gait at different speeds.Inspired by this character,an efficient adaptive diagonal gait locomotion controller i...Quadruped animals in the nature realize high energy efficiency locomotion by automatically changing their gait at different speeds.Inspired by this character,an efficient adaptive diagonal gait locomotion controller is designed for quadruped robot.A unique gait planning method is proposed in this paper.As the speed of robot varies,the gait cycle time and the proportion of stance and swing phase of each leg are adjusted to form a variety of gaits.The optimal joint torque is calculated by the controller combined with Virtual Model Control(VMC)and Whole-Body Control(WBC)to realize the desired motion.The gait and step frequency of the robot can automatically adapt to the change of speed.Several experiments are done with a quadruped robot made by our laboratory to verify that the gait can change automatically from slow-trotting to flying-trot during the period when speed is from 0 to 4 m/s.The ratio of swing phase is from less than 0.5 to more than 0.5 to realize the running motion with four feet off the ground.Experiments have shown that the controller can indeed consume less energy when robot runs at a wide range of speeds comparing to the basic controller.展开更多
In this paper, a gait control scheme is presented for planar quadruped robots based on a biologic concept, namely central pattern generator(CPG). A CPG is modeled as a group of the coupled nonlinear oscillators with a...In this paper, a gait control scheme is presented for planar quadruped robots based on a biologic concept, namely central pattern generator(CPG). A CPG is modeled as a group of the coupled nonlinear oscillators with an interaction weighting matrix which determines the gait patterns. The CPG model, mapping functions and a proportional-diffierential(PD) joint controller compose the basic gait generator. By using the duty factor of gait patterns as a tonic signal, the activity of the CPG model can be modulated, and as a result, a smooth transition between diffierent gait patterns is achieved. Moreover, by tuning the parameters of the CPG model and mapping functions, the proposed basic gait generator can realize adaptive workspace trajectories for the robot to suit diffierent terrains. Simulation results illustrate and validate the effiectiveness of the proposed gait controllers.展开更多
In nature, quadrupeds as horses or cats change their gait to be suited to their motion speed. This fact is very important to realize smooth motion with different gaits. In this article a method of the gait transition ...In nature, quadrupeds as horses or cats change their gait to be suited to their motion speed. This fact is very important to realize smooth motion with different gaits. In this article a method of the gait transition for the quadruped walking machine is proposed. With analyzing the accustomed gaits of quadruped, some standard gaits and the relationships between duty factor and the phasic differences of the legs corresponding to the first leg could be concluded. With this, the gaits transferring could be continuous. Besides, celerity and on line method for generation and modifying gaits is studied, which can make the robot have a smooth motion to adapt the uncharted rough terrain.展开更多
Significant research interest has recently been attracted to the study of bipedal robots due to the wide variety of their potential applications.In reality,bipedal robots are often required to perform gait transitions...Significant research interest has recently been attracted to the study of bipedal robots due to the wide variety of their potential applications.In reality,bipedal robots are often required to perform gait transitions to achieve flexible walking.In this paper,we consider the gait transition of a five-link underactuated three-dimensional(3 D)bipedal robot,and propose a two-layer control strategy.The strategy consists of a unique,event-based,feedback controller whose feedback gain in each step is updated by an adaptive control law,and a transition controller that guides the robot from the current gait to a neighboring point of the target gait so that the state trajectory can smoothly converge to the target gait.Compared with previous works,the transition controller is parameterized and its control parameters are obtained by solving an optimization problem to guarantee the physical constraints in the transition process.Finally,the effectiveness of the control strategy is illustrated on the underactuated 3 D bipedal robot.展开更多
The purpose of this paper is to present and evaluate a method of free gait generation for HITCRI,a hexapod walking robot.The HITCR-I is designed as a modularized structure of legs that is based upon a four-bar linkage...The purpose of this paper is to present and evaluate a method of free gait generation for HITCRI,a hexapod walking robot.The HITCR-I is designed as a modularized structure of legs that is based upon a four-bar linkage mechanism and with force sensors in the tip of legs,distributed hardware structure and a modular software structure of the control system.Based on a set of local rules between adjacent legs,finite state machine(FSM) model is built to control the coordination of legs.An automatic smooth transition of gait pattern is achieved through deriving the mathematical relation between gait pattern and locomotion parameters.The disordered inter-leg phase sequence is adjusted to a regular state smoothly and quickly by the local rules based FSM,and the gait pattern can transform automatically adapting to irregular terrain.The experiment on HITCR-I has demonstrated that it can walk through irregular terrain reliably and expeditiously with the free gait controller designed in this paper.展开更多
Gecko-like robot(Geckobot),an important branch of bionic robotics,is a robot that simulates gecko's capacity to climb walls and ceilings.The work environment of the traditional wall-climbing robot is greatly limite...Gecko-like robot(Geckobot),an important branch of bionic robotics,is a robot that simulates gecko's capacity to climb walls and ceilings.The work environment of the traditional wall-climbing robot is greatly limited as the moving structure and adsorption principle of the robot have nothing to do with the real gecko.However,the adsorption principle and moving mode of the real gecko can provide a new way to break through the restrictions of the traditional wall-climbing robot.Inspired by the moving mechanism of geckos, this paper develops the Geckobot with motile body.Two types of Geckobots are addressed:one with compliant flat bar as the body,and the other with prismatic joint as the body.The compliant body not only resembles the moving mode of the real gecko body,but also simplifies the Geckobot's structure.The prismatic joint body is used to adapt the change of body length in ground-to-wall transition. The gait planning on the plane and the transition between perpendicular intersectional planes is discussed,with an emphasis on the analysis of the kinematics degree of freedom(DOF) and body posture.Central pattern generator(CPG) neural network is realized in LabVIEW and utilized to control Geckobot's movement.The CPG scheme in Lab VIEW is given,and how CPG is used to control Geckobot to turn or move forward is explored.Simulations are conducted in ADAMS to verify the feasibility of the structure design and gait planning and to acquire some parameters for practical Geckobot development.The experiment with Geckobot-Ⅰand Geckobot-Ⅱon their crawling capacity on the plane and the ground-to-wall transition finds that the robot can complete the crawling movement and ground-to-wall transition,verifying the feasibility of the structure design,gait planning and the CPG motion control.The Geckobot structure design approach,gait planning and the CPG motion control presented would be useful for the research on wall-climbing robots.展开更多
In this paper, an emotional mathematical model and affective state probability description space of a humanoid robot are set up on the basis of psycho-dynamics' psychological energy and affective energy conservation ...In this paper, an emotional mathematical model and affective state probability description space of a humanoid robot are set up on the basis of psycho-dynamics' psychological energy and affective energy conservation law. The emotional state transferring process and hidden Markov chain algorithm of stimulating transition process are then studied. The simulation results show that the mathematical model is applicable to the authentic affective state change rule of human beings. Finally, the gait generation experiment results of control signal and electric current tracking wave-form are presented to demonstrate the validity of the proposed mathematical model.展开更多
文摘In nature, to realize the smooth motion for different speeds, the continuous gait transition is usually required for the quadrupeds. Thus, the gait simulation of quadrupeds is a requisite step to obtain the stable and energy-efficient gait for the walking machines. In this paper, the definitions of the two gait parameters, phasic difference and duty factor are presented, which can determine the gait of the quadrupeds. Then, several typical gaits of the quadrupeds are analyzed such that the seven standard gaits and corresponding parameters are summarized. Additionally, the variance law of the two parameters, which determine the relationship of gait transition, is analyzed. Furthermore, the quadruped gait derivative spectrum (QGDS) is proposed and the gait definition of the quadrupeds is presented. To minimize the power consumption, the choice criterion of gait, the optimal gait in terms of the motion speed, duty factory, and power consumption for the walking machines, is developed. Last, the continuous variance of the gait is implemented by the simulation of the gait transition from walk to trot, which evaluate the choice criterion and transition of gait.
基金supported in part by the National Key Research and Development Program of China[Grant No.2020AAA0108900]the National Natural Science Foundation of China[No.91948201,62003190,62203268,61973185]+1 种基金the Open Research Projects of Zhejiang Lab(No.2022NB0AB06)the National Natural Science Foundation of Shandong Province of China[No.ZR2022QF027].
文摘Quadruped animals in the nature realize high energy efficiency locomotion by automatically changing their gait at different speeds.Inspired by this character,an efficient adaptive diagonal gait locomotion controller is designed for quadruped robot.A unique gait planning method is proposed in this paper.As the speed of robot varies,the gait cycle time and the proportion of stance and swing phase of each leg are adjusted to form a variety of gaits.The optimal joint torque is calculated by the controller combined with Virtual Model Control(VMC)and Whole-Body Control(WBC)to realize the desired motion.The gait and step frequency of the robot can automatically adapt to the change of speed.Several experiments are done with a quadruped robot made by our laboratory to verify that the gait can change automatically from slow-trotting to flying-trot during the period when speed is from 0 to 4 m/s.The ratio of swing phase is from less than 0.5 to more than 0.5 to realize the running motion with four feet off the ground.Experiments have shown that the controller can indeed consume less energy when robot runs at a wide range of speeds comparing to the basic controller.
基金the National High Technology Research and Development(863)Program of China(No.2007AA09Z215)the National Natural Science Foundation of China(No.51009091)the Research Fund for the Doctoral Program of Higher Education of China(No.20100073120016)
文摘In this paper, a gait control scheme is presented for planar quadruped robots based on a biologic concept, namely central pattern generator(CPG). A CPG is modeled as a group of the coupled nonlinear oscillators with an interaction weighting matrix which determines the gait patterns. The CPG model, mapping functions and a proportional-diffierential(PD) joint controller compose the basic gait generator. By using the duty factor of gait patterns as a tonic signal, the activity of the CPG model can be modulated, and as a result, a smooth transition between diffierent gait patterns is achieved. Moreover, by tuning the parameters of the CPG model and mapping functions, the proposed basic gait generator can realize adaptive workspace trajectories for the robot to suit diffierent terrains. Simulation results illustrate and validate the effiectiveness of the proposed gait controllers.
基金Supported by the china postdoctoral Science Foundation (No. 20080430362).
文摘In nature, quadrupeds as horses or cats change their gait to be suited to their motion speed. This fact is very important to realize smooth motion with different gaits. In this article a method of the gait transition for the quadruped walking machine is proposed. With analyzing the accustomed gaits of quadruped, some standard gaits and the relationships between duty factor and the phasic differences of the legs corresponding to the first leg could be concluded. With this, the gaits transferring could be continuous. Besides, celerity and on line method for generation and modifying gaits is studied, which can make the robot have a smooth motion to adapt the uncharted rough terrain.
基金Project supported by the National Natural Science Foundation of China(Nos.91748126,11772292,and 51521064)
文摘Significant research interest has recently been attracted to the study of bipedal robots due to the wide variety of their potential applications.In reality,bipedal robots are often required to perform gait transitions to achieve flexible walking.In this paper,we consider the gait transition of a five-link underactuated three-dimensional(3 D)bipedal robot,and propose a two-layer control strategy.The strategy consists of a unique,event-based,feedback controller whose feedback gain in each step is updated by an adaptive control law,and a transition controller that guides the robot from the current gait to a neighboring point of the target gait so that the state trajectory can smoothly converge to the target gait.Compared with previous works,the transition controller is parameterized and its control parameters are obtained by solving an optimization problem to guarantee the physical constraints in the transition process.Finally,the effectiveness of the control strategy is illustrated on the underactuated 3 D bipedal robot.
基金Supported by the National High Technology Research and Development Programme of China(No.2007AA041550)the National NaturalScience Foundation of China(No.51105101)
文摘The purpose of this paper is to present and evaluate a method of free gait generation for HITCRI,a hexapod walking robot.The HITCR-I is designed as a modularized structure of legs that is based upon a four-bar linkage mechanism and with force sensors in the tip of legs,distributed hardware structure and a modular software structure of the control system.Based on a set of local rules between adjacent legs,finite state machine(FSM) model is built to control the coordination of legs.An automatic smooth transition of gait pattern is achieved through deriving the mathematical relation between gait pattern and locomotion parameters.The disordered inter-leg phase sequence is adjusted to a regular state smoothly and quickly by the local rules based FSM,and the gait pattern can transform automatically adapting to irregular terrain.The experiment on HITCR-I has demonstrated that it can walk through irregular terrain reliably and expeditiously with the free gait controller designed in this paper.
基金supported by National Natural Science Foundation of China(Grant No.60535020)National Natural Science Funds for Distinguished Young Scholars of China(Grant No.60525314)
文摘Gecko-like robot(Geckobot),an important branch of bionic robotics,is a robot that simulates gecko's capacity to climb walls and ceilings.The work environment of the traditional wall-climbing robot is greatly limited as the moving structure and adsorption principle of the robot have nothing to do with the real gecko.However,the adsorption principle and moving mode of the real gecko can provide a new way to break through the restrictions of the traditional wall-climbing robot.Inspired by the moving mechanism of geckos, this paper develops the Geckobot with motile body.Two types of Geckobots are addressed:one with compliant flat bar as the body,and the other with prismatic joint as the body.The compliant body not only resembles the moving mode of the real gecko body,but also simplifies the Geckobot's structure.The prismatic joint body is used to adapt the change of body length in ground-to-wall transition. The gait planning on the plane and the transition between perpendicular intersectional planes is discussed,with an emphasis on the analysis of the kinematics degree of freedom(DOF) and body posture.Central pattern generator(CPG) neural network is realized in LabVIEW and utilized to control Geckobot's movement.The CPG scheme in Lab VIEW is given,and how CPG is used to control Geckobot to turn or move forward is explored.Simulations are conducted in ADAMS to verify the feasibility of the structure design and gait planning and to acquire some parameters for practical Geckobot development.The experiment with Geckobot-Ⅰand Geckobot-Ⅱon their crawling capacity on the plane and the ground-to-wall transition finds that the robot can complete the crawling movement and ground-to-wall transition,verifying the feasibility of the structure design,gait planning and the CPG motion control.The Geckobot structure design approach,gait planning and the CPG motion control presented would be useful for the research on wall-climbing robots.
基金supported by National High Technology Research and Development Program of China (863 Program)(No.2007AA04Z218)
文摘In this paper, an emotional mathematical model and affective state probability description space of a humanoid robot are set up on the basis of psycho-dynamics' psychological energy and affective energy conservation law. The emotional state transferring process and hidden Markov chain algorithm of stimulating transition process are then studied. The simulation results show that the mathematical model is applicable to the authentic affective state change rule of human beings. Finally, the gait generation experiment results of control signal and electric current tracking wave-form are presented to demonstrate the validity of the proposed mathematical model.