A 5 Gb/s adaptive equalizer with a new adaptation scheme is presented here by using 0.13μm CMOS process. The circuit consists of the combination of equalizer amplifier, limiter amplifier and adaptation loop. The adap...A 5 Gb/s adaptive equalizer with a new adaptation scheme is presented here by using 0.13μm CMOS process. The circuit consists of the combination of equalizer amplifier, limiter amplifier and adaptation loop. The adaptive algorithm exploits both the low frequency gain loop and the equalizer loop to minimize the inter-symbol interference (ISI) for a variety of cable characteristics. In addition, an offset cancellation loop is used to alleviate the offset influence of the signal path. The adaptive equalizer core occupies an area of 0.3567 mm2 and consumes a power consumption of 81.7 mW with 1.8 V power supply. Experiment results demonstrate that the equalizer could compensate for a designed cable loss with 0.23 UI peak-to-peak jitter.展开更多
In this paper we used the probability distribution of the average channel gain of the fading channel to analyze the degree of fading effects on both the PER (packet error rate) and the throughput in OFDM systems. Inst...In this paper we used the probability distribution of the average channel gain of the fading channel to analyze the degree of fading effects on both the PER (packet error rate) and the throughput in OFDM systems. Instead of solely examining the average received SNR (signal-to-noise ratio) value of a packet, considering the whole distribution of the average received SNR allows us to aggregate a better selection of the mode switching thresholds in the rate adaptive 802.11 a/g WLAN. This paper demonstrates that the set of mode switching thresholds can be determined for each individual target , so that the optimal throughput performance is obtained on a per target basis. Numerical results show that mode switching thresholds should be reduced with the lowering of target values. This conclusion could have significant implications for improving the performances of location (distance)-dependent mobile applications, since the determinations of target values are closely related to the distances between mobile devices and the access point.展开更多
基金Project supported by the National Natural Science Foundation of China(No.61376099)the Foundation for Fundamental Research of China(No.JSZL2016110B003)the Major Fundamental Research Program of Shaanxi(No.2017ZDJC-26)
文摘A 5 Gb/s adaptive equalizer with a new adaptation scheme is presented here by using 0.13μm CMOS process. The circuit consists of the combination of equalizer amplifier, limiter amplifier and adaptation loop. The adaptive algorithm exploits both the low frequency gain loop and the equalizer loop to minimize the inter-symbol interference (ISI) for a variety of cable characteristics. In addition, an offset cancellation loop is used to alleviate the offset influence of the signal path. The adaptive equalizer core occupies an area of 0.3567 mm2 and consumes a power consumption of 81.7 mW with 1.8 V power supply. Experiment results demonstrate that the equalizer could compensate for a designed cable loss with 0.23 UI peak-to-peak jitter.
文摘In this paper we used the probability distribution of the average channel gain of the fading channel to analyze the degree of fading effects on both the PER (packet error rate) and the throughput in OFDM systems. Instead of solely examining the average received SNR (signal-to-noise ratio) value of a packet, considering the whole distribution of the average received SNR allows us to aggregate a better selection of the mode switching thresholds in the rate adaptive 802.11 a/g WLAN. This paper demonstrates that the set of mode switching thresholds can be determined for each individual target , so that the optimal throughput performance is obtained on a per target basis. Numerical results show that mode switching thresholds should be reduced with the lowering of target values. This conclusion could have significant implications for improving the performances of location (distance)-dependent mobile applications, since the determinations of target values are closely related to the distances between mobile devices and the access point.