Constructing step-scheme(S-scheme)heterojunctions has been confirmed as a promising strategy for enhancing the photocatalytic activity of composite materials.In this work,a series of sulfur-doped g-C3N4(SCN)/TiO2 S-sc...Constructing step-scheme(S-scheme)heterojunctions has been confirmed as a promising strategy for enhancing the photocatalytic activity of composite materials.In this work,a series of sulfur-doped g-C3N4(SCN)/TiO2 S-scheme photocatalysts were synthesized using electrospinning and calcination methods.The as-prepared SCN/TiO2 composites showed superior photocatalytic performance than pure TiO2 and SCN in the photocatalytic degradation of Congo Red(CR)aqueous solution.The significant enhancement in photocatalytic activity benefited not only from the 1D well-distributed nanostructure,but also from the S-scheme heterojunction.Furthermore,the XPS analyses and DFT calculations demonstrated that electrons were transferred from SCN to TiO2 across the interface of the SCN/TiO2 composites.The built-in electric field,band edge bending,and Coulomb interaction synergistically facilitated the recombination of relatively useless electrons and holes in hybrid when the interface was irradiated by simulated solar light.Therefore,the remaining electrons and holes with higher reducibility and oxidizability endowed the composite with supreme redox ability.These results were adequately verified by radical trapping experiments,ESR tests,and in situ XPS analyses,suggesting that the electron immigration in the photocatalyst followed the S-scheme heterojunction mechanism.This work can enrich our knowledge of the design and fabrication of novel S-scheme heterojunction photocatalysts and provide a promising strategy for solving environmental pollution in the future.展开更多
Semiconductor heterojunction photocatalysts have received much concern due to their great application prospect in solar energy utilization and conversion.Rational construction of heterostructure with two or more semic...Semiconductor heterojunction photocatalysts have received much concern due to their great application prospect in solar energy utilization and conversion.Rational construction of heterostructure with two or more semiconductor materials can integrate the advantages of multi-components to simultaneously improve the photo-induced charges separation,extend visible light absorption range and retain the high redox ability of photocatalysts.Recently,constructing of g-C3 N4-based heterostructure has become a hot focus due to the multiple merits of g-C3 N4,such as facile synthesis,high stability,unique optical and electronic characteristics.This review tries to give a comprehensive introduction and provide the possible tendency in design and fabrication of g-C3 N4-based heterojunction photocatalysts,especially in rational synthesis of type-II heterojunction,direct Z-scheme heterojunction,new type of S-scheme heterojunction,p-n heterojunction and Schottky heterojunction.Furthermore,the special charges transfer mechanisms of g-C3 N4-based heterojunctions are discussed and their potential applications in photocatalytic water splitting,photo-degradation of contaminants and photo-reduction of CO2 into fuels are also summarized.Finally,we attempt to propose some crucial issues based on the current research,which should be further investigated and resolved in this interesting research area.展开更多
Photocatalytic hydrogen production based on semiconductor photocatalysts has been considered as one of the most promising strategies to resolve the global energy shortage.Graphitic carbon nitride(g‐C3N4)has been a st...Photocatalytic hydrogen production based on semiconductor photocatalysts has been considered as one of the most promising strategies to resolve the global energy shortage.Graphitic carbon nitride(g‐C3N4)has been a star visible‐light photocatalyst in this field due to its various advantages.However,pristine g‐C3N4usually exhibits limited activity.Herein,to enhance the performance of g‐C3N4,alkali metal ion(Li+,Na+,or K+)‐doped g‐C3N4are prepared via facile high‐temperature treatment.The prepared samples are characterized and analyzed using the technique of XRD,ICP‐AES,SEM,UV‐vis DRS,BET,XPS,PL,TRPL,photoelectrochemical measurements,photocatalytic tests,etc.The resultant doped photocatalysts show enhanced visible‐light photocatalytic activities for hydrogen production,benefiting from the increased specific surface areas(which provide more active sites),decreased band gaps for extended visible‐light absorption,and improved electronic structures for efficient charge transfer.In particular,because of the optimal tuning of both microstructure and electronic structure,the Na‐doped g‐C3N4shows the most effective utilization of photogenerated electrons during the water reduction process.As a result,the highest photocatalytic performance is achieved over the Na‐doped g‐C3N4photocatalyst(18.7?mol/h),3.7times that of pristine g‐C3N4(5.0?mol/h).This work gives a systematic study for the understanding of doping effect of alkali metals in semiconductor photocatalysis.展开更多
The development of low cost, metal free semiconductor photocatalysts for CO2 reduction to fuels and valuable chemical feedstocks is a practically imperative for reducing anthropogenic CO2 emissions. In this work, blac...The development of low cost, metal free semiconductor photocatalysts for CO2 reduction to fuels and valuable chemical feedstocks is a practically imperative for reducing anthropogenic CO2 emissions. In this work, black phosphorus quantum dots(BPQDs) were successfully dispersed on a graphitic carbon nitride(g-C3N4) support via a simple electrostatic attraction approach, and the activities of BP@g-C3N4 composites were evaluated for photocatalytic CO2 reduction. The BP@g-C3N4 composites displayed improved carrier separation efficiency and higher activities for photocatalytic CO2 reduction to CO(6.54 μmol g^-1h^-1 at the optimum BPQDs loading of 1 wt%) compared with pure g-C3N4(2.65 μmol g^-1h^-1). This work thus identifies a novel approach towards metal free photocatalysts for CO2 photoreduction.展开更多
Converting sustainable solar energy into hydrogen energy over semiconductor-based photocatalytic materials provides an alternative to fossil fuel consumption.However,efficient photocatalytic splitting of water to real...Converting sustainable solar energy into hydrogen energy over semiconductor-based photocatalytic materials provides an alternative to fossil fuel consumption.However,efficient photocatalytic splitting of water to realize carbon-free hydrogen production remains a challenge.Heterojunction photocatalysts with well-defined dimensionality and perfectly matched interfaces are promising for achieving highly efficient solar-to-hydrogen conversion.Herein,we report the fabrication of a novel type of protonated graphitic carbon nitride(PCN)/Ti3C2 MXene heterojunctions with strong interfacial interactions.As expected,the two-dimensional(2D)PCN/2D Ti3C2 MXene interface heterojunction achieves a highly improved hydrogen evolution rate(2181μmol∙g‒1)in comparison with bulk g-C3N4(393μmol∙g‒1)and protonated g-C3N4(816μmol∙g‒1).The charge-regulated surfaces of PCN and the accelerated charge transport at the face-to-face 2D/2D Schottky heterojunction interface are the major contributors to the excellent hydrogen evolution performance of the composite photocatalyst.展开更多
Metal‐organic framework MIL‐100(Fe)and g‐C3N4 heterojunctions(MG‐x,x=5%,10%,20%,and 30%,x is the mass fraction of MIL‐100(Fe)in the hybrids)were facilely fabricated through ball‐milling and annealing,and charact...Metal‐organic framework MIL‐100(Fe)and g‐C3N4 heterojunctions(MG‐x,x=5%,10%,20%,and 30%,x is the mass fraction of MIL‐100(Fe)in the hybrids)were facilely fabricated through ball‐milling and annealing,and characterized by powder X‐ray diffraction,Fourier transform infrared spectroscopy,thermogravimetric analysis,transmission electron microscopy,UV‐visible diffuse‐reflectance spectrometry,and photoluminescence emission spectrometry.The photocatalytic activities of the series of MG‐x heterojunctions toward Cr(VI)reduction and diclofenac sodium degradation were tested upon irradiation with simulated sunlight.The influence of different organic compounds(ethanol,citric acid,oxalic acid,and diclofenac sodium)as hole scavengers and the pH values(2,3,4,6,and 8)on the photocatalytic activities of the series of MG‐x heterojunctions was investigated.MG‐20%showed superior photocatalytic Cr(VI)reduction and diclofenac sodium degradation performance than did the individual MIL‐100(Fe)and g‐C3N4 because of the improved separation of photoinduced electron‐hole charges,which was clarified via photoluminescence emission and electrochemical data.Moreover,the MG‐x exhibited good reusability and stability after several runs.展开更多
To improve the photocatalytic performance of pristine photocatalysts,element doping,construction of composites and fabrication of novel nanostructures are recognized as universal modification methods.These methods hav...To improve the photocatalytic performance of pristine photocatalysts,element doping,construction of composites and fabrication of novel nanostructures are recognized as universal modification methods.These methods have been experimentally verified to be effective in manifold photocatalytic application over various photocatalysts.Density functional theory(DFT)calculation is a powerful and fundamental tool to pinpoint the intrinsic mechanism of the enhanced photocatalytic activity.And it holds the degree of precision ranging from atoms,molecules to unit cells.Herein,recent DFT calculation research progress of modified s-triazine-based graphitic carbon nitride(g-C3N4)systems as photocatalysts is summarized.To specify,we collected information of doping site,formation energy,geometric,and electronic properties.We also discussed the synergistic effect of work function,Fermi level and band edge position on the built-in electric field,transfer route of photogenerated charge carriers and photocatalytic mechanism(traditional typeⅡor direct Z-scheme heterostructure).Moreover,we analyzed the geometric configuration,band structure,and stability of g-C3N4 nanocluster,nanoribbon,and nanotube.Finally,future perspective in the further theoretical revelation of g-C3N4-based photocatalysts is proposed.展开更多
文摘Constructing step-scheme(S-scheme)heterojunctions has been confirmed as a promising strategy for enhancing the photocatalytic activity of composite materials.In this work,a series of sulfur-doped g-C3N4(SCN)/TiO2 S-scheme photocatalysts were synthesized using electrospinning and calcination methods.The as-prepared SCN/TiO2 composites showed superior photocatalytic performance than pure TiO2 and SCN in the photocatalytic degradation of Congo Red(CR)aqueous solution.The significant enhancement in photocatalytic activity benefited not only from the 1D well-distributed nanostructure,but also from the S-scheme heterojunction.Furthermore,the XPS analyses and DFT calculations demonstrated that electrons were transferred from SCN to TiO2 across the interface of the SCN/TiO2 composites.The built-in electric field,band edge bending,and Coulomb interaction synergistically facilitated the recombination of relatively useless electrons and holes in hybrid when the interface was irradiated by simulated solar light.Therefore,the remaining electrons and holes with higher reducibility and oxidizability endowed the composite with supreme redox ability.These results were adequately verified by radical trapping experiments,ESR tests,and in situ XPS analyses,suggesting that the electron immigration in the photocatalyst followed the S-scheme heterojunction mechanism.This work can enrich our knowledge of the design and fabrication of novel S-scheme heterojunction photocatalysts and provide a promising strategy for solving environmental pollution in the future.
基金financially supported by the Natural Science Basic Research Program of Shaanxi(Program No.2019JQ-841)Scientific Research Program Funded by Shaanxi Provincial Education Department(Program No.19JK0376)。
文摘Semiconductor heterojunction photocatalysts have received much concern due to their great application prospect in solar energy utilization and conversion.Rational construction of heterostructure with two or more semiconductor materials can integrate the advantages of multi-components to simultaneously improve the photo-induced charges separation,extend visible light absorption range and retain the high redox ability of photocatalysts.Recently,constructing of g-C3 N4-based heterostructure has become a hot focus due to the multiple merits of g-C3 N4,such as facile synthesis,high stability,unique optical and electronic characteristics.This review tries to give a comprehensive introduction and provide the possible tendency in design and fabrication of g-C3 N4-based heterojunction photocatalysts,especially in rational synthesis of type-II heterojunction,direct Z-scheme heterojunction,new type of S-scheme heterojunction,p-n heterojunction and Schottky heterojunction.Furthermore,the special charges transfer mechanisms of g-C3 N4-based heterojunctions are discussed and their potential applications in photocatalytic water splitting,photo-degradation of contaminants and photo-reduction of CO2 into fuels are also summarized.Finally,we attempt to propose some crucial issues based on the current research,which should be further investigated and resolved in this interesting research area.
基金supported by the National Natural Science Foundation of of China(51472191,21407115,21773179)the Natural Science Foundation of Hubei Province of China(2017CFA031)the Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices,Ministry of Education(JDGD-201509)~~
文摘Photocatalytic hydrogen production based on semiconductor photocatalysts has been considered as one of the most promising strategies to resolve the global energy shortage.Graphitic carbon nitride(g‐C3N4)has been a star visible‐light photocatalyst in this field due to its various advantages.However,pristine g‐C3N4usually exhibits limited activity.Herein,to enhance the performance of g‐C3N4,alkali metal ion(Li+,Na+,or K+)‐doped g‐C3N4are prepared via facile high‐temperature treatment.The prepared samples are characterized and analyzed using the technique of XRD,ICP‐AES,SEM,UV‐vis DRS,BET,XPS,PL,TRPL,photoelectrochemical measurements,photocatalytic tests,etc.The resultant doped photocatalysts show enhanced visible‐light photocatalytic activities for hydrogen production,benefiting from the increased specific surface areas(which provide more active sites),decreased band gaps for extended visible‐light absorption,and improved electronic structures for efficient charge transfer.In particular,because of the optimal tuning of both microstructure and electronic structure,the Na‐doped g‐C3N4shows the most effective utilization of photogenerated electrons during the water reduction process.As a result,the highest photocatalytic performance is achieved over the Na‐doped g‐C3N4photocatalyst(18.7?mol/h),3.7times that of pristine g‐C3N4(5.0?mol/h).This work gives a systematic study for the understanding of doping effect of alkali metals in semiconductor photocatalysis.
基金supported by the National Natural Science Foundation of China (51502146, U1404506, 21671113, 51772305, 51572270, and U1662118)the International Partnership Program of Chinese Academy of Sciences (GJHZ1819)+1 种基金the Royal Society-Newton Advanced Fellowship (NA170422)supported by Open Fund (PEBM201702) of Key Laboratory for Photonic and Electric Bandgap Materials, Ministry of Education (Harbin Normal University)
文摘The development of low cost, metal free semiconductor photocatalysts for CO2 reduction to fuels and valuable chemical feedstocks is a practically imperative for reducing anthropogenic CO2 emissions. In this work, black phosphorus quantum dots(BPQDs) were successfully dispersed on a graphitic carbon nitride(g-C3N4) support via a simple electrostatic attraction approach, and the activities of BP@g-C3N4 composites were evaluated for photocatalytic CO2 reduction. The BP@g-C3N4 composites displayed improved carrier separation efficiency and higher activities for photocatalytic CO2 reduction to CO(6.54 μmol g^-1h^-1 at the optimum BPQDs loading of 1 wt%) compared with pure g-C3N4(2.65 μmol g^-1h^-1). This work thus identifies a novel approach towards metal free photocatalysts for CO2 photoreduction.
文摘Converting sustainable solar energy into hydrogen energy over semiconductor-based photocatalytic materials provides an alternative to fossil fuel consumption.However,efficient photocatalytic splitting of water to realize carbon-free hydrogen production remains a challenge.Heterojunction photocatalysts with well-defined dimensionality and perfectly matched interfaces are promising for achieving highly efficient solar-to-hydrogen conversion.Herein,we report the fabrication of a novel type of protonated graphitic carbon nitride(PCN)/Ti3C2 MXene heterojunctions with strong interfacial interactions.As expected,the two-dimensional(2D)PCN/2D Ti3C2 MXene interface heterojunction achieves a highly improved hydrogen evolution rate(2181μmol∙g‒1)in comparison with bulk g-C3N4(393μmol∙g‒1)and protonated g-C3N4(816μmol∙g‒1).The charge-regulated surfaces of PCN and the accelerated charge transport at the face-to-face 2D/2D Schottky heterojunction interface are the major contributors to the excellent hydrogen evolution performance of the composite photocatalyst.
基金supported by the National Natural Science Foundation of China(51578034,51878023)the Great Wall Scholars Training Program Project of Beijing Municipality Universities(CIT&TCD20180323)+3 种基金the Project of Construction of Innovation Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality(IDHT20170508)the Beijing Talent Project(2017A38)the Fundamental Research Funds for Beijing Universities(X18075/X18076/X18124/X18125/X18276)the Scientific Research Foundation of Beijing University of Civil Engineering and Architecture(KYJJ2017033/KYJJ2017008)~~
文摘Metal‐organic framework MIL‐100(Fe)and g‐C3N4 heterojunctions(MG‐x,x=5%,10%,20%,and 30%,x is the mass fraction of MIL‐100(Fe)in the hybrids)were facilely fabricated through ball‐milling and annealing,and characterized by powder X‐ray diffraction,Fourier transform infrared spectroscopy,thermogravimetric analysis,transmission electron microscopy,UV‐visible diffuse‐reflectance spectrometry,and photoluminescence emission spectrometry.The photocatalytic activities of the series of MG‐x heterojunctions toward Cr(VI)reduction and diclofenac sodium degradation were tested upon irradiation with simulated sunlight.The influence of different organic compounds(ethanol,citric acid,oxalic acid,and diclofenac sodium)as hole scavengers and the pH values(2,3,4,6,and 8)on the photocatalytic activities of the series of MG‐x heterojunctions was investigated.MG‐20%showed superior photocatalytic Cr(VI)reduction and diclofenac sodium degradation performance than did the individual MIL‐100(Fe)and g‐C3N4 because of the improved separation of photoinduced electron‐hole charges,which was clarified via photoluminescence emission and electrochemical data.Moreover,the MG‐x exhibited good reusability and stability after several runs.
基金This work was supported by NSFC(U1705251,21573170,21905219,and 21433007)National Postdoctoral Program for Innovative Talents(BX20180231)+2 种基金Fundamental Research Funds for the Central Universities(WUT:2018IVA089)Innovative Research Funds of SKLWUT(2017-ZD-4)Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices,Ministry of Education,Jianghan University(JDGD-201704).
文摘To improve the photocatalytic performance of pristine photocatalysts,element doping,construction of composites and fabrication of novel nanostructures are recognized as universal modification methods.These methods have been experimentally verified to be effective in manifold photocatalytic application over various photocatalysts.Density functional theory(DFT)calculation is a powerful and fundamental tool to pinpoint the intrinsic mechanism of the enhanced photocatalytic activity.And it holds the degree of precision ranging from atoms,molecules to unit cells.Herein,recent DFT calculation research progress of modified s-triazine-based graphitic carbon nitride(g-C3N4)systems as photocatalysts is summarized.To specify,we collected information of doping site,formation energy,geometric,and electronic properties.We also discussed the synergistic effect of work function,Fermi level and band edge position on the built-in electric field,transfer route of photogenerated charge carriers and photocatalytic mechanism(traditional typeⅡor direct Z-scheme heterostructure).Moreover,we analyzed the geometric configuration,band structure,and stability of g-C3N4 nanocluster,nanoribbon,and nanotube.Finally,future perspective in the further theoretical revelation of g-C3N4-based photocatalysts is proposed.