提出了一种基于模糊推理与遗传算法的最优PID控制器的设计方法 .该控制器由离线和在线 2部分组成 .在离线部分 ,以系统响应的超调量、上升时间及调整时间为性能指标 ,利用遗传算法搜索出一组最优的PID参数K p ,T i 及T d ,作为在线部分...提出了一种基于模糊推理与遗传算法的最优PID控制器的设计方法 .该控制器由离线和在线 2部分组成 .在离线部分 ,以系统响应的超调量、上升时间及调整时间为性能指标 ,利用遗传算法搜索出一组最优的PID参数K p ,T i 及T d ,作为在线部分调节的初始值 ;在在线部分 ,采用一个专用的PID参数优化程序 ,以离线部分获得的K p ,T i 及T d 为基础 ,根据系统当前的误差e和误差变化率 e ,通过模糊推理在线调整系统瞬态响应的PID参数 ,以确保系统的响应具有最优的动态和稳态性能 .计算机仿真结果表明 ,与传统的PID控制器相比 ,这种最优PID控制器具有良好的控制性能和鲁棒性能 。展开更多
An optimal PID controller with incomplete derivation is proposed based on fuzzy inference and the geneticalgorithm, which is called the fuzzy-GA PID controller with incomplete derivation. It consists of the off-line p...An optimal PID controller with incomplete derivation is proposed based on fuzzy inference and the geneticalgorithm, which is called the fuzzy-GA PID controller with incomplete derivation. It consists of the off-line part andthe on-line part. In the off-line part, by taking the overshoot, rise time, and settling time of system unit step re-sponse as the performance indexes and by using the genetic algorithm, a group of optimal PID parameters K*p , Ti* ,and Tj are obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-linepart, based on K; , Ti* , and T*d and according to the current system error e and its time derivative, a dedicatedprogram is written, which is used to optimize and adjust the PID parameters on line through a fuzzy inference mech-anism to ensure that the system response has optimal dynamic and steady-state performance. The controller has beenused to control the D. C. motor of the intelligent bionic artificial leg designed by the authors. The result of computersimulation shows that this kind of optimal PID controller has excellent control performance and robust performance.展开更多
文摘提出了一种基于模糊推理与遗传算法的最优PID控制器的设计方法 .该控制器由离线和在线 2部分组成 .在离线部分 ,以系统响应的超调量、上升时间及调整时间为性能指标 ,利用遗传算法搜索出一组最优的PID参数K p ,T i 及T d ,作为在线部分调节的初始值 ;在在线部分 ,采用一个专用的PID参数优化程序 ,以离线部分获得的K p ,T i 及T d 为基础 ,根据系统当前的误差e和误差变化率 e ,通过模糊推理在线调整系统瞬态响应的PID参数 ,以确保系统的响应具有最优的动态和稳态性能 .计算机仿真结果表明 ,与传统的PID控制器相比 ,这种最优PID控制器具有良好的控制性能和鲁棒性能 。
基金Project (50275150) supported by the National Natural Science Foundation of ChinaProject (RL200002) supported by the Foundation of the Robotics Laboratory, Chinese Academy of Sciences
文摘An optimal PID controller with incomplete derivation is proposed based on fuzzy inference and the geneticalgorithm, which is called the fuzzy-GA PID controller with incomplete derivation. It consists of the off-line part andthe on-line part. In the off-line part, by taking the overshoot, rise time, and settling time of system unit step re-sponse as the performance indexes and by using the genetic algorithm, a group of optimal PID parameters K*p , Ti* ,and Tj are obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-linepart, based on K; , Ti* , and T*d and according to the current system error e and its time derivative, a dedicatedprogram is written, which is used to optimize and adjust the PID parameters on line through a fuzzy inference mech-anism to ensure that the system response has optimal dynamic and steady-state performance. The controller has beenused to control the D. C. motor of the intelligent bionic artificial leg designed by the authors. The result of computersimulation shows that this kind of optimal PID controller has excellent control performance and robust performance.