A single freedom degree model of drilling bit-rock was established according to the vibration mechanism and its dynamic characteristics. Moreover, a novel identification method of rock and soil parameters for vibratio...A single freedom degree model of drilling bit-rock was established according to the vibration mechanism and its dynamic characteristics. Moreover, a novel identification method of rock and soil parameters for vibration drilling based on the fuzzy least squares(FLS)-support vector machine(SVM) was developed, in which the fuzzy membership function was set by using linear distance, and its parameters, such as penalty factor and kernel parameter, were optimized by using adaptive genetic algorithm. And FLS-SVM identification on rock and soil parameters for vibration drilling was made by changing the input/output data from single freedom degree model of drilling bit-rock. The results of identification simulation and resonance column experiment show that relative error of natural frequency for some hard sand from identification simulation and resonance column experiment is 1.1% and the identification precision based on the fuzzy least squares-support vector machine is high.展开更多
This study describes a classification methodology based on support vector machines(SVMs),which offer superior classification performance for fault diagnosis in chemical process engineering.The method incorporates an e...This study describes a classification methodology based on support vector machines(SVMs),which offer superior classification performance for fault diagnosis in chemical process engineering.The method incorporates an efficient parameter tuning procedure(based on minimization of radius/margin bound for SVM's leave-one-out errors)into a multi-class classification strategy using a fuzzy decision factor,which is named fuzzy support vector machine(FSVM).The datasets generated from the Tennessee Eastman process(TEP)simulator were used to evaluate the clas-sification performance.To decrease the negative influence of the auto-correlated and irrelevant variables,a key vari-able identification procedure using recursive feature elimination,based on the SVM is implemented,with time lags incorporated,before every classifier is trained,and the number of relatively important variables to every classifier is basically determined by 10-fold cross-validation.Performance comparisons are implemented among several kinds of multi-class decision machines,by which the effectiveness of the proposed approach is proved.展开更多
To overcome the problem that soft sensor models cannot be updated with the process changes, a soft sensor modeling algorithm based on hybrid fuzzy c-means (FCM) algorithm and incremental support vector machines (I...To overcome the problem that soft sensor models cannot be updated with the process changes, a soft sensor modeling algorithm based on hybrid fuzzy c-means (FCM) algorithm and incremental support vector machines (ISVM) is proposed. This hybrid algorithm FCMISVM includes three parts: samples clustering based on FCM algorithm, learning algorithm based on ISVM, and heuristic sample displacement method. In the training process, the training samples are first clustered by the FCM algorithm, and then by training each clustering with the SVM algorithm, a sub-model is built to each clustering. In the predicting process, when an incremental sample that represents new operation information is introduced in the model, the fuzzy membership function of the sample to each clustering is first computed by the FCM algorithm. Then, a corresponding SVM sub-model of the clustering with the largest fuzzy membership function is used to predict and perform incremental learning so the model can be updated on-line. An old sample chosen by heuristic sample displacement method is then discarded from the sub-model to control the size of the working set. The proposed method is applied to predict the p-xylene (PX) purity in the adsorption separation process. Simulation results indicate that the proposed method actually increases the model's adaptive abilities to various operation conditions and improves its generalization capability.展开更多
Combining refined composite multiscale fuzzy entropy(RCMFE)and support vector machine(SVM)with particle swarm optimization(PSO)for diagnosing roller bearing faults is proposed in this paper.Compared with refined compo...Combining refined composite multiscale fuzzy entropy(RCMFE)and support vector machine(SVM)with particle swarm optimization(PSO)for diagnosing roller bearing faults is proposed in this paper.Compared with refined composite multiscale sample entropy(RCMSE)and multiscale fuzzy entropy(MFE),the smoothness of RCMFE is superior to that of those models.The corresponding comparison of smoothness and analysis of validity through decomposition accuracy are considered in the numerical experiments by considering the white and 1/f noise signals.Then RCMFE,RCMSE and MFE are developed to affect extraction by using different roller bearing vibration signals.Then the extracted RCMFE,RCMSE and MFE eigenvectors are regarded as the input of the PSO-SVM to diagnose the roller bearing fault.Finally,the results show that the smoothness of RCMFE is superior to that of RCMSE and MFE.Meanwhile,the fault classification accuracy is higher than that of RCMSE and MFE.展开更多
基金Project(2012BAK09B02-05) supported by the National Key Technology R&D Program of China during the Twelfth Five-year PeriodProject(51274250) supported by the National Natural Science Foundation of China
文摘A single freedom degree model of drilling bit-rock was established according to the vibration mechanism and its dynamic characteristics. Moreover, a novel identification method of rock and soil parameters for vibration drilling based on the fuzzy least squares(FLS)-support vector machine(SVM) was developed, in which the fuzzy membership function was set by using linear distance, and its parameters, such as penalty factor and kernel parameter, were optimized by using adaptive genetic algorithm. And FLS-SVM identification on rock and soil parameters for vibration drilling was made by changing the input/output data from single freedom degree model of drilling bit-rock. The results of identification simulation and resonance column experiment show that relative error of natural frequency for some hard sand from identification simulation and resonance column experiment is 1.1% and the identification precision based on the fuzzy least squares-support vector machine is high.
基金Supported by the Special Funds for Major State Basic Research Program of China (973 Program,No.2002CB312200)the Na-tional Natural Science Foundation of China (No.60574019,No.60474045)+1 种基金the Key Technologies R&D Program of Zhejiang Province (No.2005C21087)the Academician Foundation of Zhejiang Province (No.2005A1001-13).
文摘This study describes a classification methodology based on support vector machines(SVMs),which offer superior classification performance for fault diagnosis in chemical process engineering.The method incorporates an efficient parameter tuning procedure(based on minimization of radius/margin bound for SVM's leave-one-out errors)into a multi-class classification strategy using a fuzzy decision factor,which is named fuzzy support vector machine(FSVM).The datasets generated from the Tennessee Eastman process(TEP)simulator were used to evaluate the clas-sification performance.To decrease the negative influence of the auto-correlated and irrelevant variables,a key vari-able identification procedure using recursive feature elimination,based on the SVM is implemented,with time lags incorporated,before every classifier is trained,and the number of relatively important variables to every classifier is basically determined by 10-fold cross-validation.Performance comparisons are implemented among several kinds of multi-class decision machines,by which the effectiveness of the proposed approach is proved.
基金Supported by the National Natural Science Foundation of China (60421002) and priority supported financially by "the New Century 151 Talent Project" of Zhejiang Province.
文摘To overcome the problem that soft sensor models cannot be updated with the process changes, a soft sensor modeling algorithm based on hybrid fuzzy c-means (FCM) algorithm and incremental support vector machines (ISVM) is proposed. This hybrid algorithm FCMISVM includes three parts: samples clustering based on FCM algorithm, learning algorithm based on ISVM, and heuristic sample displacement method. In the training process, the training samples are first clustered by the FCM algorithm, and then by training each clustering with the SVM algorithm, a sub-model is built to each clustering. In the predicting process, when an incremental sample that represents new operation information is introduced in the model, the fuzzy membership function of the sample to each clustering is first computed by the FCM algorithm. Then, a corresponding SVM sub-model of the clustering with the largest fuzzy membership function is used to predict and perform incremental learning so the model can be updated on-line. An old sample chosen by heuristic sample displacement method is then discarded from the sub-model to control the size of the working set. The proposed method is applied to predict the p-xylene (PX) purity in the adsorption separation process. Simulation results indicate that the proposed method actually increases the model's adaptive abilities to various operation conditions and improves its generalization capability.
基金Projects(City U 11201315,T32-101/15-R)supported by the Research Grants Council of the Hong Kong Special Administrative Region,China
文摘Combining refined composite multiscale fuzzy entropy(RCMFE)and support vector machine(SVM)with particle swarm optimization(PSO)for diagnosing roller bearing faults is proposed in this paper.Compared with refined composite multiscale sample entropy(RCMSE)and multiscale fuzzy entropy(MFE),the smoothness of RCMFE is superior to that of those models.The corresponding comparison of smoothness and analysis of validity through decomposition accuracy are considered in the numerical experiments by considering the white and 1/f noise signals.Then RCMFE,RCMSE and MFE are developed to affect extraction by using different roller bearing vibration signals.Then the extracted RCMFE,RCMSE and MFE eigenvectors are regarded as the input of the PSO-SVM to diagnose the roller bearing fault.Finally,the results show that the smoothness of RCMFE is superior to that of RCMSE and MFE.Meanwhile,the fault classification accuracy is higher than that of RCMSE and MFE.