提出CF-WFCM算法,该算法分为属性权重学习算法和聚类算法两部分.属性权重学习算法,从数据自身的相似性出发,通过梯度递减算法极小化属性评价函数CFuzziness(w),为每个属性赋予一个权重.将属性权重应用于Fuzzy C Mean聚类算法,得到CF-WFC...提出CF-WFCM算法,该算法分为属性权重学习算法和聚类算法两部分.属性权重学习算法,从数据自身的相似性出发,通过梯度递减算法极小化属性评价函数CFuzziness(w),为每个属性赋予一个权重.将属性权重应用于Fuzzy C Mean聚类算法,得到CF-WFCM算法的聚类算法.CF-WFCM算法强化重要属性在聚类过程中的作用,消减冗余属性的作用,从而改善聚类的效果.我们选取了部分UCI数据库进行实验,实验结果证明:CF-WFCM算法的聚类结果优于FCM算法的聚类结果.函数CFuzziness(w)不仅可以评价属性的重要性,而且可以评价属性评价函数的优劣.实验说明了这一问题.最后我们对CF-WFCM算法进行了讨论.展开更多
针对模糊C均值算法(fuzzy C-means algorithm,简称FCM)在入侵检测中需要预先指定聚类数的问题,提出了一种自动决定聚类数算法(fuzzy C-means and support vector machine algorithm,简称F-CMSVM).它首先用模糊C均值算法把目标数据集分...针对模糊C均值算法(fuzzy C-means algorithm,简称FCM)在入侵检测中需要预先指定聚类数的问题,提出了一种自动决定聚类数算法(fuzzy C-means and support vector machine algorithm,简称F-CMSVM).它首先用模糊C均值算法把目标数据集分为两类,然后使用带有模糊成员函数的支持向量机(support vector machihe,简称SVM)算法对结果进行评估以确定目标数据集是否可分,再迭代计算,最终得到聚类结果.支持向量机算法引入模糊C均值算法得出的隶属矩阵作为模糊成员函数,使得不同的输入样本可以得到不同的惩罚值,从而得到最优的分类超平面.该算法既不需要对训练数据集进行标记,也不需要指定聚类数,因此是一种真正的无监督算法.在对KDD CUP 1999数据集的仿真实验结果表明,该算法不仅能够得到最佳聚类数,而且对入侵有较好的检测效果.展开更多
文摘提出CF-WFCM算法,该算法分为属性权重学习算法和聚类算法两部分.属性权重学习算法,从数据自身的相似性出发,通过梯度递减算法极小化属性评价函数CFuzziness(w),为每个属性赋予一个权重.将属性权重应用于Fuzzy C Mean聚类算法,得到CF-WFCM算法的聚类算法.CF-WFCM算法强化重要属性在聚类过程中的作用,消减冗余属性的作用,从而改善聚类的效果.我们选取了部分UCI数据库进行实验,实验结果证明:CF-WFCM算法的聚类结果优于FCM算法的聚类结果.函数CFuzziness(w)不仅可以评价属性的重要性,而且可以评价属性评价函数的优劣.实验说明了这一问题.最后我们对CF-WFCM算法进行了讨论.
文摘针对模糊C均值算法(fuzzy C-means algorithm,简称FCM)在入侵检测中需要预先指定聚类数的问题,提出了一种自动决定聚类数算法(fuzzy C-means and support vector machine algorithm,简称F-CMSVM).它首先用模糊C均值算法把目标数据集分为两类,然后使用带有模糊成员函数的支持向量机(support vector machihe,简称SVM)算法对结果进行评估以确定目标数据集是否可分,再迭代计算,最终得到聚类结果.支持向量机算法引入模糊C均值算法得出的隶属矩阵作为模糊成员函数,使得不同的输入样本可以得到不同的惩罚值,从而得到最优的分类超平面.该算法既不需要对训练数据集进行标记,也不需要指定聚类数,因此是一种真正的无监督算法.在对KDD CUP 1999数据集的仿真实验结果表明,该算法不仅能够得到最佳聚类数,而且对入侵有较好的检测效果.