针对模糊C均值算法(fuzzy C-means algorithm,简称FCM)在入侵检测中需要预先指定聚类数的问题,提出了一种自动决定聚类数算法(fuzzy C-means and support vector machine algorithm,简称F-CMSVM).它首先用模糊C均值算法把目标数据集分...针对模糊C均值算法(fuzzy C-means algorithm,简称FCM)在入侵检测中需要预先指定聚类数的问题,提出了一种自动决定聚类数算法(fuzzy C-means and support vector machine algorithm,简称F-CMSVM).它首先用模糊C均值算法把目标数据集分为两类,然后使用带有模糊成员函数的支持向量机(support vector machihe,简称SVM)算法对结果进行评估以确定目标数据集是否可分,再迭代计算,最终得到聚类结果.支持向量机算法引入模糊C均值算法得出的隶属矩阵作为模糊成员函数,使得不同的输入样本可以得到不同的惩罚值,从而得到最优的分类超平面.该算法既不需要对训练数据集进行标记,也不需要指定聚类数,因此是一种真正的无监督算法.在对KDD CUP 1999数据集的仿真实验结果表明,该算法不仅能够得到最佳聚类数,而且对入侵有较好的检测效果.展开更多
传统的负荷密度指标的求取方法通常采用经验法或简单类比法,难以满足精度要求,从负荷密度与其影响因素存在着某种非线性关系的角度出发,提出了一种基于最小二乘支持向量机(least squares support vector machine,LS-SVM)的配电网空间负...传统的负荷密度指标的求取方法通常采用经验法或简单类比法,难以满足精度要求,从负荷密度与其影响因素存在着某种非线性关系的角度出发,提出了一种基于最小二乘支持向量机(least squares support vector machine,LS-SVM)的配电网空间负荷预测方法。该方法首先引入模糊C–均值算法把各类用地性质负荷聚类为几个等级,建立比较精确的负荷密度指标体系;然后根据待预测地块的规划属性,在体系中为LS-SVM预测模型选出与预测样本特征更为相似的样本进行训练,提高LS-SVM的泛化能力和预测精度;采用遗传算法对LS-SVM预测模型的参数进行自动优化,进一步提高预测模型的适应性和预测精度,实例验证了该方法的实用性和有效性。展开更多
文摘针对模糊C均值算法(fuzzy C-means algorithm,简称FCM)在入侵检测中需要预先指定聚类数的问题,提出了一种自动决定聚类数算法(fuzzy C-means and support vector machine algorithm,简称F-CMSVM).它首先用模糊C均值算法把目标数据集分为两类,然后使用带有模糊成员函数的支持向量机(support vector machihe,简称SVM)算法对结果进行评估以确定目标数据集是否可分,再迭代计算,最终得到聚类结果.支持向量机算法引入模糊C均值算法得出的隶属矩阵作为模糊成员函数,使得不同的输入样本可以得到不同的惩罚值,从而得到最优的分类超平面.该算法既不需要对训练数据集进行标记,也不需要指定聚类数,因此是一种真正的无监督算法.在对KDD CUP 1999数据集的仿真实验结果表明,该算法不仅能够得到最佳聚类数,而且对入侵有较好的检测效果.
文摘传统的负荷密度指标的求取方法通常采用经验法或简单类比法,难以满足精度要求,从负荷密度与其影响因素存在着某种非线性关系的角度出发,提出了一种基于最小二乘支持向量机(least squares support vector machine,LS-SVM)的配电网空间负荷预测方法。该方法首先引入模糊C–均值算法把各类用地性质负荷聚类为几个等级,建立比较精确的负荷密度指标体系;然后根据待预测地块的规划属性,在体系中为LS-SVM预测模型选出与预测样本特征更为相似的样本进行训练,提高LS-SVM的泛化能力和预测精度;采用遗传算法对LS-SVM预测模型的参数进行自动优化,进一步提高预测模型的适应性和预测精度,实例验证了该方法的实用性和有效性。