The vibration characteristics of composite vertical stabilizer skin structures play a critical role in damping effects designed for overcoming the air disturbances experienced by aircraft structural components during ...The vibration characteristics of composite vertical stabilizer skin structures play a critical role in damping effects designed for overcoming the air disturbances experienced by aircraft structural components during flight.The first-order fundamental frequencies and their corresponding damping characteristics of the vertical stabilizer skin structure tow-steered by automatic fiber placement technique were optimized with the parameterized trajectories and plies as design variables.Firstly,the vibration and damping numerical models were derived based on Kirchhoff laminate theory,the Rayleigh-Ritz method,and the Strain Energy Method.Then the optimization model was developed by adopting the self-adaptive Differential Evolution Multi-objective optimization algorithm and incorporating the solution method of Pareto Front.The constraints of this optimization model considered the experimentally obtained minimum turning radius of prepregs tow-steered in automatic fiber placement process obtained from experimental tests.Finally,the comparison of numerical simulation results was conducted for the optimized trajectories and the conventional straight trajectories under various boundary conditions,and the numerical results were partially validated through damping and frequency tests.The results indicate the vibration characteristics of the composite vertical stabilizer skin structure can be enhanced to a large extent by optimizing fiber trajectories,and the enhancement percentage is affected by the boundary conditions of the actual structure.展开更多
Aimed at calculating the fundamental frequency of vibration of special-shaped, simple-supported elastic plates, Conformal Mapping theory is applied, and the mathematical method of trigonometric interpolation with inte...Aimed at calculating the fundamental frequency of vibration of special-shaped, simple-supported elastic plates, Conformal Mapping theory is applied, and the mathematical method of trigonometric interpolation with interpolation points mutual iterative between odd and even sequences in boundary region is provided, as well as the conformal mapping function which can be described by real number region between complicated region and unit dish region is carried out. Furthermore, in the in-plane state of constant stress, vibrating function is completed by unit dish region method for simple-supported elastic plates with concentrated substance of complicated vibrating region, and the coefficient of fundamental frequency of the plate is analyzed. Meanwhile, taking simple-supported elastic ellipse-plates as an example, the effects on fundamental frequency caused by eccentric ratio, the coefficient of constant in-plane stress, as well as the concentrated substance mass and positions are analyzed respectively.展开更多
基金co-supported by the National Natural Science Foundation of China(Nos.51875159,52175311,52175133,12102115,52005446)the Fok Ying Tung Education Foundation,China(No.171046)the Fundamental Research Funds for the Central Universities,China(Nos.JZ2021HGTA0178,JZ2020HGQA0197)。
文摘The vibration characteristics of composite vertical stabilizer skin structures play a critical role in damping effects designed for overcoming the air disturbances experienced by aircraft structural components during flight.The first-order fundamental frequencies and their corresponding damping characteristics of the vertical stabilizer skin structure tow-steered by automatic fiber placement technique were optimized with the parameterized trajectories and plies as design variables.Firstly,the vibration and damping numerical models were derived based on Kirchhoff laminate theory,the Rayleigh-Ritz method,and the Strain Energy Method.Then the optimization model was developed by adopting the self-adaptive Differential Evolution Multi-objective optimization algorithm and incorporating the solution method of Pareto Front.The constraints of this optimization model considered the experimentally obtained minimum turning radius of prepregs tow-steered in automatic fiber placement process obtained from experimental tests.Finally,the comparison of numerical simulation results was conducted for the optimized trajectories and the conventional straight trajectories under various boundary conditions,and the numerical results were partially validated through damping and frequency tests.The results indicate the vibration characteristics of the composite vertical stabilizer skin structure can be enhanced to a large extent by optimizing fiber trajectories,and the enhancement percentage is affected by the boundary conditions of the actual structure.
文摘Aimed at calculating the fundamental frequency of vibration of special-shaped, simple-supported elastic plates, Conformal Mapping theory is applied, and the mathematical method of trigonometric interpolation with interpolation points mutual iterative between odd and even sequences in boundary region is provided, as well as the conformal mapping function which can be described by real number region between complicated region and unit dish region is carried out. Furthermore, in the in-plane state of constant stress, vibrating function is completed by unit dish region method for simple-supported elastic plates with concentrated substance of complicated vibrating region, and the coefficient of fundamental frequency of the plate is analyzed. Meanwhile, taking simple-supported elastic ellipse-plates as an example, the effects on fundamental frequency caused by eccentric ratio, the coefficient of constant in-plane stress, as well as the concentrated substance mass and positions are analyzed respectively.