We prove all integral points of the elliptic curve y^2=x^2-30x+133 are (x,y) = (-7,0),(-3,±14),(2, ±9),(6,±13), (5143326,±11664498677), by using the method of algebraic number theory a...We prove all integral points of the elliptic curve y^2=x^2-30x+133 are (x,y) = (-7,0),(-3,±14),(2, ±9),(6,±13), (5143326,±11664498677), by using the method of algebraic number theory and p-adic analysis. Furthermore, we develop a computation method to find all integral points on a class of elliptic curve y^2= (x+α)(x^2-α)(x^2-αx+b) ,α ,b∈Z,α^2〈4b and find all integer solutions of hyperelliptic Diophantine equation Dy^2=Ax^4 + Bx^2 +C,B^2〈4AC.展开更多
For quadratic number ?elds F = Q(√2p1 ···pt?1 ) with primes pj ≡ 1 mod 8, the authors study the class number and the norm of the fundamental unit of F. The resultsgeneralize nicely what has been famil...For quadratic number ?elds F = Q(√2p1 ···pt?1 ) with primes pj ≡ 1 mod 8, the authors study the class number and the norm of the fundamental unit of F. The resultsgeneralize nicely what has been familiar for the ?elds Q(√2p) with a prime p ≡ 1 mod 8, including density statements. And the results are stated in terms of the quadratic form x2 + 32y2 and illustrated in terms of graphs.展开更多
Let K 6 be a real cyclic sextic number fields, and K 2, K 3 be its quadratic and cubic subfields. Let h(L) denote the ideal class number of field L. Seven congruences for h -=h(K 6)/h(K 2)h(K 3) are obtained. In parti...Let K 6 be a real cyclic sextic number fields, and K 2, K 3 be its quadratic and cubic subfields. Let h(L) denote the ideal class number of field L. Seven congruences for h -=h(K 6)/h(K 2)h(K 3) are obtained. In particular, when conductor f\-6 of K 6 is prime p, then Ch -≡B p-16B 5(p-1)6 (mod p), where C is an explicitly given constant, and B n is the Bernoulli number. These results for real cyclic sextic fields are an extension of results for quadratic and cyclic quartic fields obtained by Ankeny_Artin_Chowla, Kiselev, Carlitz, Lu Hongwen, Zhang Xianke from 1948 to 1988.展开更多
最近,Takashi Agoh对于素数p≡1(mod4)给出了计算二次域Q(p^(1/2))的类数h的一个公式,此公式仅依赖于Q(p^(1/2))的基本单位ε,素数p以及数a=1+sum from k=1 to(p-1)/2((-1)~kN_K).孙琦教授对奇素数p,得到N_k的若干性质和计算N_2,N_3,N_...最近,Takashi Agoh对于素数p≡1(mod4)给出了计算二次域Q(p^(1/2))的类数h的一个公式,此公式仅依赖于Q(p^(1/2))的基本单位ε,素数p以及数a=1+sum from k=1 to(p-1)/2((-1)~kN_K).孙琦教授对奇素数p,得到N_k的若干性质和计算N_2,N_3,N_4的公式.本文对奇素数p,得到N_k的若干新性质和N_5,N_6的计算公式,展开更多
基金Supported by the National Natural Science Foun-dation of China (2001AA141010)
文摘We prove all integral points of the elliptic curve y^2=x^2-30x+133 are (x,y) = (-7,0),(-3,±14),(2, ±9),(6,±13), (5143326,±11664498677), by using the method of algebraic number theory and p-adic analysis. Furthermore, we develop a computation method to find all integral points on a class of elliptic curve y^2= (x+α)(x^2-α)(x^2-αx+b) ,α ,b∈Z,α^2〈4b and find all integer solutions of hyperelliptic Diophantine equation Dy^2=Ax^4 + Bx^2 +C,B^2〈4AC.
基金Project supported by the National Natural Science Foundation of China (No.10371054) and 02KJB11006.
文摘For quadratic number ?elds F = Q(√2p1 ···pt?1 ) with primes pj ≡ 1 mod 8, the authors study the class number and the norm of the fundamental unit of F. The resultsgeneralize nicely what has been familiar for the ?elds Q(√2p) with a prime p ≡ 1 mod 8, including density statements. And the results are stated in terms of the quadratic form x2 + 32y2 and illustrated in terms of graphs.
文摘Let K 6 be a real cyclic sextic number fields, and K 2, K 3 be its quadratic and cubic subfields. Let h(L) denote the ideal class number of field L. Seven congruences for h -=h(K 6)/h(K 2)h(K 3) are obtained. In particular, when conductor f\-6 of K 6 is prime p, then Ch -≡B p-16B 5(p-1)6 (mod p), where C is an explicitly given constant, and B n is the Bernoulli number. These results for real cyclic sextic fields are an extension of results for quadratic and cyclic quartic fields obtained by Ankeny_Artin_Chowla, Kiselev, Carlitz, Lu Hongwen, Zhang Xianke from 1948 to 1988.
文摘最近,Takashi Agoh对于素数p≡1(mod4)给出了计算二次域Q(p^(1/2))的类数h的一个公式,此公式仅依赖于Q(p^(1/2))的基本单位ε,素数p以及数a=1+sum from k=1 to(p-1)/2((-1)~kN_K).孙琦教授对奇素数p,得到N_k的若干性质和计算N_2,N_3,N_4的公式.本文对奇素数p,得到N_k的若干新性质和N_5,N_6的计算公式,
基金Supported by National Key Basic Research Program of China(2013CB834202)National Natural Science Foundation of China(11171317,11501429)Fundamental Research Funds for the Central Universities(JB150706)