Cell-PLoc 2.0 is a package of web-servers evolved from Cell-PLoc (Chou, K.C. & Shen, H.B., Nature Protocols, 2008, 2:153-162) by a top-down approach to improve the power for predicting subcellular localization of ...Cell-PLoc 2.0 is a package of web-servers evolved from Cell-PLoc (Chou, K.C. & Shen, H.B., Nature Protocols, 2008, 2:153-162) by a top-down approach to improve the power for predicting subcellular localization of proteins in various organisms. It contains six predictors: Euk-mPLoc 2.0, Hum-mPLoc 2.0, Plant-mPLoc, Gpos-mPLoc, Gneg-mPLoc, and Virus-mPLoc, specialized for eukaryotic, human, plant, Gram- positive bacterial, Gram-negative bacterial, and virus proteins, respectively. Compared with Cell-PLoc, the predictors in the Cell-PLoc 2.0 have the following advantageous features: (1) they all have the capacity to deal with the multiplex proteins that can simultaneiously exist, or move between, two or more subcellular location sites;(2) no accession number is needed for the input of a query protein even if using the “high- level” GO (gene ontology) prediction engine;(3) the functional domain information and sequential evolution information are fused into the “ab initio” sequence-based prediction engine to enhance its accuracy. In this protocol, a step- to-step guide is provided for how to use the web server predictors in the Cell-PLoc 2.0 package, which is freely accessible to the public at http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/.展开更多
Polymorphisms within gene coding regions represent the most important part of the overall genetic diversity of rice.We characterized the gene-coding sequence-haplotype(gcHap)diversity of 45963 rice genes in 3010 rice ...Polymorphisms within gene coding regions represent the most important part of the overall genetic diversity of rice.We characterized the gene-coding sequence-haplotype(gcHap)diversity of 45963 rice genes in 3010 rice accessions.With an average of 226±390 gcHaps per gene in rice populations,rice genes could be classified into three main categories:12865 conserved genes,10254 subspecific differentiating genes,and 22844 remaining genes.We found that 39218 rice genes carry>255179 major gcHaps of potential functional importance.Most(87.5%)of the detected gcHaps were specific to subspecies or populations.The inferred proto-ancestors of local landrace populations reconstructed from conserved predominant(ancient)gcHaps correlated strongly with wild rice accessions from the same geographic regions,supporting a multiorigin(domestication)model of Oryza sativa.Past breeding efforts generally increased the gcHap diversity of modern varieties and'caused significant frequency shifts in predominant gcHaps of 14266 genes due to independent selection in the two subspecies.Low frequencies of“favorable”gcHaps at most known genes related to rice yield in modern varieties suggest huge potential for rice improvement by mining and pyramiding of favorable gcHaps.The gcHap data were demonstrated to have greater power than SNPs for the detection of causal genes that affect complex traits.The rice gcHap diversity dataset generated in this study would facilitate rice basic research and improvement in the future.展开更多
The presence of oxygen functional groups is detrimental to the capacitive performance of porous carbon electrode in organic electrolyte. In this regards, hydrogen thermal reduction has been demonstrated effective appr...The presence of oxygen functional groups is detrimental to the capacitive performance of porous carbon electrode in organic electrolyte. In this regards, hydrogen thermal reduction has been demonstrated effective approach in removing the unstable surface oxygen while maintaining the high porosity of carbon matrix. However, the exact evolution mechanism of various oxygen species during this process, as well as the correlation with electrochemical properties, is still under development. Herein, biomass-based porous carbon is adopted as the model material to trace its structure evolution of oxygen removal under hydrogen thermal reduction process with the temperature range of 400–800 °C. The optimum microstructure with low oxygen content of 0.90% and proper pore size distribution was achieved at 700°C. XPS, TPRMS and Boehm titration results indicate that the oxygen elimination undergoes three distinctive stages(intermolecular dehydration, hydrogenation and decomposition reactions). The optimum microstructure with low oxygen content of 0.90% and proper pore size distribution was achieved at 700 °C. Benefiting from the stable electrochemical interface and the optimized porous structure, the as-obtained HAC-700 exhibit significantly suppressed self-discharge and leak current, with improved cycling stability, which is attributable to the stabilization of electrochemical interface between carbon surface and electrolyte. The result provides insights for rational design of surface chemistry for high-performance carbon electrode towards advanced energy storage.展开更多
Electrolytic water splitting(EWS)is an attractive and promising technique for the production of hydrogen energy.Nevertheless,the sluggish kinetic rate of hydrogen/oxygen evolution reactions leads to a high overpotenti...Electrolytic water splitting(EWS)is an attractive and promising technique for the production of hydrogen energy.Nevertheless,the sluggish kinetic rate of hydrogen/oxygen evolution reactions leads to a high overpotential and low energy efficiency.Up to date,Pt/Ir-based nanocatalysts have become the state-of-the-art EWS catalysts,but disadvantages such as high cost and low earth abundance greatly limit their applications in EWS devices.As an attractive candidate for the Pt/Ir catalysts,series of Ru-based nanomaterials have aroused much attention for their low price,Pt-like hydrogen bond strength,and high EWS activity.In particular,Ru-doped functional porous materials have been becoming one of the most representative EWS catalysts,which can not only achieve the dispersion and adjustment for active Ru sites,but also simultaneously solve the problems of mass transfer and catalytic conversion in EWS.In this review,the design and preparation strategies of Ru-doped functional porous materials toward EWS in recent years are summarized,including Ru-doped metal organic frameworks(MOFs),Ru-doped porous organic polymers(POPs),and their derivatives.Meanwhile,detailed structure–activity relationships induced by the tuned geometric/electronic structures of Ru-doped functional porous materials are further depicted in this review.Last but not least,the challenges and perspectives of Ru-doped functional porous materials catalysts are reasonably proposed to provide fresh ideas for the design of Ru-based EWS catalysts.展开更多
As a four-electron transfer reaction,oxygen evolution reaction(OER)is limited by large overpotential and slow kinetics.Here,we in-situ synthesized two-dimensional(2D)Ni-Fe metal-organic framework nanosheets on nickel ...As a four-electron transfer reaction,oxygen evolution reaction(OER)is limited by large overpotential and slow kinetics.Here,we in-situ synthesized two-dimensional(2D)Ni-Fe metal-organic framework nanosheets on nickel foam(NixFe-TPA/NF,TPA=terephthalic acid)for oxygen evolution in alkaline and alkaline seawater electrolytes.In 1 M KOH,Ni3Fe-TPA/NF shows a low overpotential(η10)of 189 mV at 10 mA·cm^(-2) and an ultra-low overpotential of only 260 mV at 500 mA·cm^(-2).In alkaline seawater,Ni3Fe-TPA/NF still provides impressive OER performance,with anη10 of 265 mV.In-situ Raman characterization results show that the phase transition occurs during the OER,and Ni3FeOOH with more oxygen vacancies is in-situ formed,reducing the OER energy barrier.Density functional theory(DFT)reveals that the synergy between Ni and Fe reduces the energy barrier and accelerates the rate-determining step.In addition,the ultra-thin 2D sheet structure and the close combination of Ni3FeOOH and highly conductive NF support ensure the high catalytic OER activity.Therefore,the surface reconstruction and structural modification strategy can be used to design and prepare high-performance OER electrocatalysts for energy-related applications.展开更多
文摘Cell-PLoc 2.0 is a package of web-servers evolved from Cell-PLoc (Chou, K.C. & Shen, H.B., Nature Protocols, 2008, 2:153-162) by a top-down approach to improve the power for predicting subcellular localization of proteins in various organisms. It contains six predictors: Euk-mPLoc 2.0, Hum-mPLoc 2.0, Plant-mPLoc, Gpos-mPLoc, Gneg-mPLoc, and Virus-mPLoc, specialized for eukaryotic, human, plant, Gram- positive bacterial, Gram-negative bacterial, and virus proteins, respectively. Compared with Cell-PLoc, the predictors in the Cell-PLoc 2.0 have the following advantageous features: (1) they all have the capacity to deal with the multiplex proteins that can simultaneiously exist, or move between, two or more subcellular location sites;(2) no accession number is needed for the input of a query protein even if using the “high- level” GO (gene ontology) prediction engine;(3) the functional domain information and sequential evolution information are fused into the “ab initio” sequence-based prediction engine to enhance its accuracy. In this protocol, a step- to-step guide is provided for how to use the web server predictors in the Cell-PLoc 2.0 package, which is freely accessible to the public at http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/.
基金funded by the National Key Research and Development Program of China(2016YFD0100301)the National Natural Science Foundation of China(31771762)+1 种基金the Agricultural Science,and Technology Innovation Program and the Cooperation and Innovation Mission(CAAS-ZD>CT202001)the Talent Introduction Program(RC311901)of Anhui Agricultural University.
文摘Polymorphisms within gene coding regions represent the most important part of the overall genetic diversity of rice.We characterized the gene-coding sequence-haplotype(gcHap)diversity of 45963 rice genes in 3010 rice accessions.With an average of 226±390 gcHaps per gene in rice populations,rice genes could be classified into three main categories:12865 conserved genes,10254 subspecific differentiating genes,and 22844 remaining genes.We found that 39218 rice genes carry>255179 major gcHaps of potential functional importance.Most(87.5%)of the detected gcHaps were specific to subspecies or populations.The inferred proto-ancestors of local landrace populations reconstructed from conserved predominant(ancient)gcHaps correlated strongly with wild rice accessions from the same geographic regions,supporting a multiorigin(domestication)model of Oryza sativa.Past breeding efforts generally increased the gcHap diversity of modern varieties and'caused significant frequency shifts in predominant gcHaps of 14266 genes due to independent selection in the two subspecies.Low frequencies of“favorable”gcHaps at most known genes related to rice yield in modern varieties suggest huge potential for rice improvement by mining and pyramiding of favorable gcHaps.The gcHap data were demonstrated to have greater power than SNPs for the detection of causal genes that affect complex traits.The rice gcHap diversity dataset generated in this study would facilitate rice basic research and improvement in the future.
基金National Science Foundation for Excellent Young Scholars of China (21922815)Key Research and Development (R&D) Projects of Shanxi Province (201903D121007)+3 种基金Natural Science Foundations of Shanxi Province (201801D221156)DNL Cooperation Fund of CAS (DNL180308)Science and Technology Service Network Initiative of CAS (KFJ-STS-ZDTP-068)Youth Innovation Promotion Association of CAS。
文摘The presence of oxygen functional groups is detrimental to the capacitive performance of porous carbon electrode in organic electrolyte. In this regards, hydrogen thermal reduction has been demonstrated effective approach in removing the unstable surface oxygen while maintaining the high porosity of carbon matrix. However, the exact evolution mechanism of various oxygen species during this process, as well as the correlation with electrochemical properties, is still under development. Herein, biomass-based porous carbon is adopted as the model material to trace its structure evolution of oxygen removal under hydrogen thermal reduction process with the temperature range of 400–800 °C. The optimum microstructure with low oxygen content of 0.90% and proper pore size distribution was achieved at 700°C. XPS, TPRMS and Boehm titration results indicate that the oxygen elimination undergoes three distinctive stages(intermolecular dehydration, hydrogenation and decomposition reactions). The optimum microstructure with low oxygen content of 0.90% and proper pore size distribution was achieved at 700 °C. Benefiting from the stable electrochemical interface and the optimized porous structure, the as-obtained HAC-700 exhibit significantly suppressed self-discharge and leak current, with improved cycling stability, which is attributable to the stabilization of electrochemical interface between carbon surface and electrolyte. The result provides insights for rational design of surface chemistry for high-performance carbon electrode towards advanced energy storage.
基金supported by the National Key Research and Development Program of China(No.2020YFB1506300)the National Natural Science Foundation of China(Nos.21971017,21922502,and 22075018)+2 种基金Young Elite Scientists Sponsorship Program by BAST(No.BYESS2023163)CNPC Innovation Found(No.2022DQ02-0606)Beijing Institute of Technology Research Fund Program.
文摘Electrolytic water splitting(EWS)is an attractive and promising technique for the production of hydrogen energy.Nevertheless,the sluggish kinetic rate of hydrogen/oxygen evolution reactions leads to a high overpotential and low energy efficiency.Up to date,Pt/Ir-based nanocatalysts have become the state-of-the-art EWS catalysts,but disadvantages such as high cost and low earth abundance greatly limit their applications in EWS devices.As an attractive candidate for the Pt/Ir catalysts,series of Ru-based nanomaterials have aroused much attention for their low price,Pt-like hydrogen bond strength,and high EWS activity.In particular,Ru-doped functional porous materials have been becoming one of the most representative EWS catalysts,which can not only achieve the dispersion and adjustment for active Ru sites,but also simultaneously solve the problems of mass transfer and catalytic conversion in EWS.In this review,the design and preparation strategies of Ru-doped functional porous materials toward EWS in recent years are summarized,including Ru-doped metal organic frameworks(MOFs),Ru-doped porous organic polymers(POPs),and their derivatives.Meanwhile,detailed structure–activity relationships induced by the tuned geometric/electronic structures of Ru-doped functional porous materials are further depicted in this review.Last but not least,the challenges and perspectives of Ru-doped functional porous materials catalysts are reasonably proposed to provide fresh ideas for the design of Ru-based EWS catalysts.
基金supported by the National Natural Science Foundation of China(No.22075099)the Natural Science Foundation of Jilin Province(Nos.20220101051JC and 20200201395JC)the Education Department of Jilin Province(Nos.JJKH20220967KJ and JJKH20220968CY).
文摘As a four-electron transfer reaction,oxygen evolution reaction(OER)is limited by large overpotential and slow kinetics.Here,we in-situ synthesized two-dimensional(2D)Ni-Fe metal-organic framework nanosheets on nickel foam(NixFe-TPA/NF,TPA=terephthalic acid)for oxygen evolution in alkaline and alkaline seawater electrolytes.In 1 M KOH,Ni3Fe-TPA/NF shows a low overpotential(η10)of 189 mV at 10 mA·cm^(-2) and an ultra-low overpotential of only 260 mV at 500 mA·cm^(-2).In alkaline seawater,Ni3Fe-TPA/NF still provides impressive OER performance,with anη10 of 265 mV.In-situ Raman characterization results show that the phase transition occurs during the OER,and Ni3FeOOH with more oxygen vacancies is in-situ formed,reducing the OER energy barrier.Density functional theory(DFT)reveals that the synergy between Ni and Fe reduces the energy barrier and accelerates the rate-determining step.In addition,the ultra-thin 2D sheet structure and the close combination of Ni3FeOOH and highly conductive NF support ensure the high catalytic OER activity.Therefore,the surface reconstruction and structural modification strategy can be used to design and prepare high-performance OER electrocatalysts for energy-related applications.