To interpret the common symmetric peaks caused by the large-scale structure in the complex S(f)spectrum from the heterodyne Doppler reflectometry(DR)measurement in EAST,a 2D circular-shaped O-mode full-wave model base...To interpret the common symmetric peaks caused by the large-scale structure in the complex S(f)spectrum from the heterodyne Doppler reflectometry(DR)measurement in EAST,a 2D circular-shaped O-mode full-wave model based on the finite-difference time-domain method is built.The scattering characteristics and the influences on the DR signal from various scales are investigated.When the structure is located around the cutoff layer,a moving radial or poloidal large-scale structure k_(θ)k_(θ),match(k_(θ),match is the theoretic wavenumber of Bragg scattering)could both generate an oscillation phase term called‘phase modulation’,and symmetrical peaks in the complex S(f)spectrum.It was found that the image-rejection ratio A_(−1)/A_(+1)(A_(±1)represents the amplitudes of±1 order modulation peaks)could be a feasible indicator for experiment comparison.In the case when the structure is near the cutoff layer with the same arrangement as the experiment for the edge DR channel,the curve of A_(−1)/A_(+1)versus kθcan be divided into three regions,weak asymmetrical range with k_(θ)/k_(0)0.15(k_(0)is the vacuum wavenumber),harmonics range with 0.15k_(θ)/k_(0)0.4,and Bragg scattering range of 0.4k_(θ)/k_(0)0.7.In the case when the structure is located away from the cutoff layer,the final complex S(f)spectrum is the simple superimposing of modulation and Bragg scattering,and the modulation peaks have an amplitude response nearly proportional to the local density fluctuation,called the‘propagationroute effect’.Under the H-mode experiment arrangement for the core DR,a critical fluctuation amplitude Amp(n_(e,Mod.@route))/Amp(n_(e,Tur.@MSA)∼1.3–4.1(Amp(n_(e,Mod.@route))refers to the pedestal large-scale structure amplitude and Amp(ne,Tur.@MSA)refers to turbulence amplitude at the main scattering area)is needed for the structure in the pedestal to be observed by the core DR measurement.The simulations are well consistent with the experimental results.These effects need to be carefully considered during the DR signa展开更多
We report the design of a novel multiband metamaterial bandpass filter (BPF) in the terahertz (THz)-wave region. The designed BPF is composed of a metal-dielectric-metal sandwiched structure with three nested ring...We report the design of a novel multiband metamaterial bandpass filter (BPF) in the terahertz (THz)-wave region. The designed BPF is composed of a metal-dielectric-metal sandwiched structure with three nested rings on the top surface and a cross structure on the bottom surface. Full-wave simulation results show that the designed BPF has three transmission peaks at frequencies of 0.42, 1.27, and 1.86 THz with transmission rates of-0.87,-1.85, and-1.83 dB, respectively. Multi-reflection interference theory is introduced to explain the transmission mechanism of the designed triple-band BPF. The theoretical transmission spectrum is in good agreement with the full-wave simulated results. The designed BPF can maintain a stable performance as the incident angle varies from 0 to 30 for both transverse electric and transverse magnetic polarizations of the incident wave. The designed BPF can be potentially used in THz devices due to its multiband transmissions, polarization insensitivity, and stable wide-angle response in the THz region.展开更多
The purpose of the present work is to present a full-wave analysis of scattering from the weakly ionized plasma in the plane geometry. We have yielded an approximate solution in an analytic form to the electromagnetic...The purpose of the present work is to present a full-wave analysis of scattering from the weakly ionized plasma in the plane geometry. We have yielded an approximate solution in an analytic form to the electromagnetic wave scattering from the weakly ionized plasma. In the normal and oblique incidence, the analytic solution works well, as compared with the exact solution and the solution based on the Wenzell-Kramers-Brillouin-Jeffreys (WKBJ) approximation to the uniform density profile.展开更多
The approach to estimate the length of extended targets by using the bistatic high resolution range profile( H RRP) is analyzed in this paper. The relationship between the bistatic H RRP and the monostatic H RRP of ...The approach to estimate the length of extended targets by using the bistatic high resolution range profile( H RRP) is analyzed in this paper. The relationship between the bistatic H RRP and the monostatic H RRP of extended targets are investigated. It is demonstrated by simulations that the target length measured by the bistatic H RRP is more meaningful and accurate than that by the monostatic HRRP,though the monostatic H RRP has been well developed and widely used in target recognizing and classification. The estimation results of a cone shaped target are present and compared at the end of the paper. To assure the reliability of the simulation,the bistatic H RRP is obtained through the scattering field data calculated by a fullwave numerical method,FE-BI-MLFMA.展开更多
The scattering centers(SCs)of low-detectable targets(LDTs)have a low scattering intensity.It is difficult to build the SC model of an LDT using the existing methods because these methods mainly concern dominant SCs wi...The scattering centers(SCs)of low-detectable targets(LDTs)have a low scattering intensity.It is difficult to build the SC model of an LDT using the existing methods because these methods mainly concern dominant SCs with strong scattering contributions.This paper presents an SC modeling approach to acquire the weak SCs of LDTs.We employ the induced currents at the LDT to search SCs,and the joint time-frequency transform together with the Hough transform to separate the scattering contributions of different SCs.Particle swarm optimization(PSO)is applied to improve the estimation results of SCs.The accuracy of the SC model built by this approach is verified by a full-wave numerical method.The validation results show that the SC model of the LDT can precisely simulate the signatures of high-resolution images,such as high-resolution range profile and inverse synthetic aperture radar(ISAR)images.展开更多
A generalized spectral Green’s function formulation of N-layer substrate structure is given with three dimension sources, which is a set of closed form formulas. A full-wave analysis model for rectangular microstrip ...A generalized spectral Green’s function formulation of N-layer substrate structure is given with three dimension sources, which is a set of closed form formulas. A full-wave analysis model for rectangular microstrip antennas covered with N-dielectric layers has been established by using the above spectral Green’s function. The unknown surface current density on the niicrostrip patch for such structure is found as a solution of an integral equation. The input VSWR and radiation patterns of the antenna are also obtained. The numerical results have been verified by the experimental results.展开更多
Integral formulations are widely used for full-wave analysis of microstrip interconnects. A weak point of these formulations is the inclusion of the proper planar-layered Green’s Functions (GFs), because of their com...Integral formulations are widely used for full-wave analysis of microstrip interconnects. A weak point of these formulations is the inclusion of the proper planar-layered Green’s Functions (GFs), because of their computational cost. To overcome this problem, usually the GFs are decomposed into a quasi-dynamic term and a dynamic one. Under suitable approximations, the ?rst may be given in closed form, whereas the second is approximated. Starting from a general criterion for this decomposition, in this paper we derive some simple criteria for using the closed-form quasi-dynamic GFs instead of the complete GFs, with reference to the problem of evaluating the full-wave current distribution along microstrips. These criteria are based on simple relations between frequency, line length, dielectric thickness and permittivity. The layered GFs have been embedded into a full-wave transmission line model and the results are ?rst benchmarked with respect to a full-wave numerical 3D tool, then used to assess the proposed criteria.展开更多
A new precision full-wave rectifier employing only two differential difference current conveyors, which is very suitable for CMOS technology implementation, is presented. The proposed rectifier is the voltage-mode cir...A new precision full-wave rectifier employing only two differential difference current conveyors, which is very suitable for CMOS technology implementation, is presented. The proposed rectifier is the voltage-mode circuit, which offers high-input and low-output impedance hence it can be directly connected to load without using any buffer circuits. PSPICE is used to verify the circuit performance. Simulated rectifier results based-on a 0.5 μm CMOS technology with ±2.5 V supply voltage demonstrates high precision rectification and excellent temperature stability. In addition, the application of proposed rectifier to pseudo RMS-to-DC conversion is also introduced.展开更多
The spectral domain integral equation(SDIE) provides an accurate and efficient method for computing the resonant frequency, radiation patterns, etc . Using continuous Fourier transform, the formulation utilizes the...The spectral domain integral equation(SDIE) provides an accurate and efficient method for computing the resonant frequency, radiation patterns, etc . Using continuous Fourier transform, the formulation utilizes the singular integral equations via the Glerkin's method to derive the deterministic equation with fewer mathematical manipulations. In contrast, discrete Fourier transform(DFT) requires intricate mathematical labor. The present scheme requires a small size, i.e ., (2×2) matrix, and it is possible to extract higher order modal solutions conveniently. Moreover, computation is reduced with the same convergence properties. Based on the present scheme, some results for resonant frequency and radiation patterns compared with available data and computed current distribution on the patch are presented.展开更多
This paper presents a new current conveyor (CCII+) full-wave rectifier for low frequency/small signal medical applications. The proposed rectifier is based on the current conveyor full-wave rectifier proposed previous...This paper presents a new current conveyor (CCII+) full-wave rectifier for low frequency/small signal medical applications. The proposed rectifier is based on the current conveyor full-wave rectifier proposed previously, but the proposed rectifier is better in view of no need diodes to rectify, and no need bias sources to overcome the zero crossing error. It needs only two CCII+s, two resistors, and three simple current mirrors, which is easy for IC implementation and for building in many countries. The PSPICE simulation with the current conveyor CCII+ in the current feedback opamp AD844 IC and the 2N2222 bipolar current mirror shows the good low frequency/small signal rectification, the operation voltage of down to 6 .展开更多
In this paper, a new current-controlled-power technique for small signal applications is presented. The proposed technique needs no passive devices (a resistor and a capacitor) but the well-known SCR technique needs, ...In this paper, a new current-controlled-power technique for small signal applications is presented. The proposed technique needs no passive devices (a resistor and a capacitor) but the well-known SCR technique needs, thus the proposed technique is very suitable for an IC process. An example application as a new current-controlled-power CMOS fullwave rectifier is also given. The example application is simulated by using the SPICE program. Simulation results show that the proposed technique can work well;the controlled-current from 0 μA to 5.5 μA produces the peak area amplitude from 100 mV to 0 mV to the load.展开更多
A limiting amplifier IC implemented in 65nm CMOS technology and intended for high-speed op- tical fiber communications is described in this paper. The inductorless limiting amplifier incorporates 5-stage 8 dB gain lim...A limiting amplifier IC implemented in 65nm CMOS technology and intended for high-speed op- tical fiber communications is described in this paper. The inductorless limiting amplifier incorporates 5-stage 8 dB gain limiting cells with active feedback and negative Miller capacitance, a high speed output buffer with novel third order active feedback, and a high speed full-wave rectifier. The re- ceiver signal strength indictor (RSSI) can detect input signal power with 33dB dynamic range, and the limiting amplifier features a programmable loss of signal (LOS) indication with external resistor. The sensitivity of the limiting amplifier is 5.5mV at BER = 10^ -12 and the layout area is only 0.53 × 0.72 mm^2 because of no passive inductor. The total gain is over 41dB, and bandwidth exceeds 12GHz with 56mW power dissipation.展开更多
In this work,Doppler reflectometry(DR)and radial correlation DR(RCDR)nonlinear scattering effects are studied using full-wave modeling with a set of representative FT-2 tokamak turbulence as inputs.Narrowing of the RC...In this work,Doppler reflectometry(DR)and radial correlation DR(RCDR)nonlinear scattering effects are studied using full-wave modeling with a set of representative FT-2 tokamak turbulence as inputs.Narrowing of the RCDR correlation function and widening of the DR poloidal wavenumber spectrum are demonstrated.An effect on the dependence of the DR signal frequency shift on the probing wavenumber is found,namely,this dependence‘linearizing’in the nonlinear scattering regime.Nonlinear effects are shown to be weaker for O-mode probing than for X-mode probing,while a faster transition to nonlinear regime is demonstrated for RCDR compared to DR in both probing scenarios.展开更多
基金supported by Shenzhen Clean Energy Research Institute,the National MCF Energy R&D Program of China(Nos.2018YFE0311200 and 2022YFE03070004)National Natural Science Foundation of China(Nos.U1967206 and 12075155)+1 种基金the China Postdoctoral Science Foundation(No.2021M702270)the Fundamental Research Funds for the Central Universities(No.WK3420000018)。
文摘To interpret the common symmetric peaks caused by the large-scale structure in the complex S(f)spectrum from the heterodyne Doppler reflectometry(DR)measurement in EAST,a 2D circular-shaped O-mode full-wave model based on the finite-difference time-domain method is built.The scattering characteristics and the influences on the DR signal from various scales are investigated.When the structure is located around the cutoff layer,a moving radial or poloidal large-scale structure k_(θ)k_(θ),match(k_(θ),match is the theoretic wavenumber of Bragg scattering)could both generate an oscillation phase term called‘phase modulation’,and symmetrical peaks in the complex S(f)spectrum.It was found that the image-rejection ratio A_(−1)/A_(+1)(A_(±1)represents the amplitudes of±1 order modulation peaks)could be a feasible indicator for experiment comparison.In the case when the structure is near the cutoff layer with the same arrangement as the experiment for the edge DR channel,the curve of A_(−1)/A_(+1)versus kθcan be divided into three regions,weak asymmetrical range with k_(θ)/k_(0)0.15(k_(0)is the vacuum wavenumber),harmonics range with 0.15k_(θ)/k_(0)0.4,and Bragg scattering range of 0.4k_(θ)/k_(0)0.7.In the case when the structure is located away from the cutoff layer,the final complex S(f)spectrum is the simple superimposing of modulation and Bragg scattering,and the modulation peaks have an amplitude response nearly proportional to the local density fluctuation,called the‘propagationroute effect’.Under the H-mode experiment arrangement for the core DR,a critical fluctuation amplitude Amp(n_(e,Mod.@route))/Amp(n_(e,Tur.@MSA)∼1.3–4.1(Amp(n_(e,Mod.@route))refers to the pedestal large-scale structure amplitude and Amp(ne,Tur.@MSA)refers to turbulence amplitude at the main scattering area)is needed for the structure in the pedestal to be observed by the core DR measurement.The simulations are well consistent with the experimental results.These effects need to be carefully considered during the DR signa
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11504418,11447033,and 61372048)the Fundamental Research Funds for the Central Universities,China(Grant No.2015XKMS075)
文摘We report the design of a novel multiband metamaterial bandpass filter (BPF) in the terahertz (THz)-wave region. The designed BPF is composed of a metal-dielectric-metal sandwiched structure with three nested rings on the top surface and a cross structure on the bottom surface. Full-wave simulation results show that the designed BPF has three transmission peaks at frequencies of 0.42, 1.27, and 1.86 THz with transmission rates of-0.87,-1.85, and-1.83 dB, respectively. Multi-reflection interference theory is introduced to explain the transmission mechanism of the designed triple-band BPF. The theoretical transmission spectrum is in good agreement with the full-wave simulated results. The designed BPF can maintain a stable performance as the incident angle varies from 0 to 30 for both transverse electric and transverse magnetic polarizations of the incident wave. The designed BPF can be potentially used in THz devices due to its multiband transmissions, polarization insensitivity, and stable wide-angle response in the THz region.
文摘The purpose of the present work is to present a full-wave analysis of scattering from the weakly ionized plasma in the plane geometry. We have yielded an approximate solution in an analytic form to the electromagnetic wave scattering from the weakly ionized plasma. In the normal and oblique incidence, the analytic solution works well, as compared with the exact solution and the solution based on the Wenzell-Kramers-Brillouin-Jeffreys (WKBJ) approximation to the uniform density profile.
基金Supported by the National Natural Science Fundation of China(61001192)
文摘The approach to estimate the length of extended targets by using the bistatic high resolution range profile( H RRP) is analyzed in this paper. The relationship between the bistatic H RRP and the monostatic H RRP of extended targets are investigated. It is demonstrated by simulations that the target length measured by the bistatic H RRP is more meaningful and accurate than that by the monostatic HRRP,though the monostatic H RRP has been well developed and widely used in target recognizing and classification. The estimation results of a cone shaped target are present and compared at the end of the paper. To assure the reliability of the simulation,the bistatic H RRP is obtained through the scattering field data calculated by a fullwave numerical method,FE-BI-MLFMA.
基金This work was supported by the National Key R&D Program of China(2017YFB0202500)the National Natural Science Foundation of China(61771052).
文摘The scattering centers(SCs)of low-detectable targets(LDTs)have a low scattering intensity.It is difficult to build the SC model of an LDT using the existing methods because these methods mainly concern dominant SCs with strong scattering contributions.This paper presents an SC modeling approach to acquire the weak SCs of LDTs.We employ the induced currents at the LDT to search SCs,and the joint time-frequency transform together with the Hough transform to separate the scattering contributions of different SCs.Particle swarm optimization(PSO)is applied to improve the estimation results of SCs.The accuracy of the SC model built by this approach is verified by a full-wave numerical method.The validation results show that the SC model of the LDT can precisely simulate the signatures of high-resolution images,such as high-resolution range profile and inverse synthetic aperture radar(ISAR)images.
基金Partly supported by the Research Item B96(56) of the Ministry of Railways of China
文摘A generalized spectral Green’s function formulation of N-layer substrate structure is given with three dimension sources, which is a set of closed form formulas. A full-wave analysis model for rectangular microstrip antennas covered with N-dielectric layers has been established by using the above spectral Green’s function. The unknown surface current density on the niicrostrip patch for such structure is found as a solution of an integral equation. The input VSWR and radiation patterns of the antenna are also obtained. The numerical results have been verified by the experimental results.
文摘Integral formulations are widely used for full-wave analysis of microstrip interconnects. A weak point of these formulations is the inclusion of the proper planar-layered Green’s Functions (GFs), because of their computational cost. To overcome this problem, usually the GFs are decomposed into a quasi-dynamic term and a dynamic one. Under suitable approximations, the ?rst may be given in closed form, whereas the second is approximated. Starting from a general criterion for this decomposition, in this paper we derive some simple criteria for using the closed-form quasi-dynamic GFs instead of the complete GFs, with reference to the problem of evaluating the full-wave current distribution along microstrips. These criteria are based on simple relations between frequency, line length, dielectric thickness and permittivity. The layered GFs have been embedded into a full-wave transmission line model and the results are ?rst benchmarked with respect to a full-wave numerical 3D tool, then used to assess the proposed criteria.
文摘A new precision full-wave rectifier employing only two differential difference current conveyors, which is very suitable for CMOS technology implementation, is presented. The proposed rectifier is the voltage-mode circuit, which offers high-input and low-output impedance hence it can be directly connected to load without using any buffer circuits. PSPICE is used to verify the circuit performance. Simulated rectifier results based-on a 0.5 μm CMOS technology with ±2.5 V supply voltage demonstrates high precision rectification and excellent temperature stability. In addition, the application of proposed rectifier to pseudo RMS-to-DC conversion is also introduced.
文摘The spectral domain integral equation(SDIE) provides an accurate and efficient method for computing the resonant frequency, radiation patterns, etc . Using continuous Fourier transform, the formulation utilizes the singular integral equations via the Glerkin's method to derive the deterministic equation with fewer mathematical manipulations. In contrast, discrete Fourier transform(DFT) requires intricate mathematical labor. The present scheme requires a small size, i.e ., (2×2) matrix, and it is possible to extract higher order modal solutions conveniently. Moreover, computation is reduced with the same convergence properties. Based on the present scheme, some results for resonant frequency and radiation patterns compared with available data and computed current distribution on the patch are presented.
文摘This paper presents a new current conveyor (CCII+) full-wave rectifier for low frequency/small signal medical applications. The proposed rectifier is based on the current conveyor full-wave rectifier proposed previously, but the proposed rectifier is better in view of no need diodes to rectify, and no need bias sources to overcome the zero crossing error. It needs only two CCII+s, two resistors, and three simple current mirrors, which is easy for IC implementation and for building in many countries. The PSPICE simulation with the current conveyor CCII+ in the current feedback opamp AD844 IC and the 2N2222 bipolar current mirror shows the good low frequency/small signal rectification, the operation voltage of down to 6 .
文摘In this paper, a new current-controlled-power technique for small signal applications is presented. The proposed technique needs no passive devices (a resistor and a capacitor) but the well-known SCR technique needs, thus the proposed technique is very suitable for an IC process. An example application as a new current-controlled-power CMOS fullwave rectifier is also given. The example application is simulated by using the SPICE program. Simulation results show that the proposed technique can work well;the controlled-current from 0 μA to 5.5 μA produces the peak area amplitude from 100 mV to 0 mV to the load.
基金Supported by the National High Technology Research and Development Programme of China(No.2011AA010301)the National Natural Science Foundation of China(No.60976029)
文摘A limiting amplifier IC implemented in 65nm CMOS technology and intended for high-speed op- tical fiber communications is described in this paper. The inductorless limiting amplifier incorporates 5-stage 8 dB gain limiting cells with active feedback and negative Miller capacitance, a high speed output buffer with novel third order active feedback, and a high speed full-wave rectifier. The re- ceiver signal strength indictor (RSSI) can detect input signal power with 33dB dynamic range, and the limiting amplifier features a programmable loss of signal (LOS) indication with external resistor. The sensitivity of the limiting amplifier is 5.5mV at BER = 10^ -12 and the layout area is only 0.53 × 0.72 mm^2 because of no passive inductor. The total gain is over 41dB, and bandwidth exceeds 12GHz with 56mW power dissipation.
基金Modeling of the O-mode DR signals was performed with the financial support of RFBR grant 18-32-00031Modeling of the X-mode DR signals was performed with the financial support of the Russian Science Foundation grant 17-1201110+3 种基金Measurements at the FT-2 tokamak were supported by the state contract of the Ioffe Institutethe work are supported by grants 316088 and 318314 of the Academy of Finlandpartially carried out within the framework of the French Federation for Magnetic Fusion Studies(FR-FCM)the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No.633053。
文摘In this work,Doppler reflectometry(DR)and radial correlation DR(RCDR)nonlinear scattering effects are studied using full-wave modeling with a set of representative FT-2 tokamak turbulence as inputs.Narrowing of the RCDR correlation function and widening of the DR poloidal wavenumber spectrum are demonstrated.An effect on the dependence of the DR signal frequency shift on the probing wavenumber is found,namely,this dependence‘linearizing’in the nonlinear scattering regime.Nonlinear effects are shown to be weaker for O-mode probing than for X-mode probing,while a faster transition to nonlinear regime is demonstrated for RCDR compared to DR in both probing scenarios.