传统电压控制区域(Voltage Control Area,VCA)划分中,先进行负荷节点分区,后利用灵敏度方法实现人工PV节点归并的过程较为繁复,为此文中提出了一种包含无功源节点的快速VCA划分方法。该方法通过节点类型转变的思想,在传统负荷节点的灵...传统电压控制区域(Voltage Control Area,VCA)划分中,先进行负荷节点分区,后利用灵敏度方法实现人工PV节点归并的过程较为繁复,为此文中提出了一种包含无功源节点的快速VCA划分方法。该方法通过节点类型转变的思想,在传统负荷节点的灵敏度矩阵中加入无功源节点的灵敏度元素,从而构建全维灵敏度矩阵;在考虑雅可比子矩阵中功率和电压弱耦合关系的基础上,对传统灵敏度矩阵结构进行修改,更准确地体现了节点之间电气联系的紧密程度,增强了分区结果的合理性;通过凝聚的层次聚类方法得到了包含无功源节点的全网分区结果。文中所提新方法简化了分区的计算步骤,在实现无功源节点与负荷节点同步分区的同时优化了传统PV节点的归并过程。通过对IEEE9节点、IEEE39节点系统的仿真实验,佐证了所提分区方法的有效性。展开更多
文摘传统电压控制区域(Voltage Control Area,VCA)划分中,先进行负荷节点分区,后利用灵敏度方法实现人工PV节点归并的过程较为繁复,为此文中提出了一种包含无功源节点的快速VCA划分方法。该方法通过节点类型转变的思想,在传统负荷节点的灵敏度矩阵中加入无功源节点的灵敏度元素,从而构建全维灵敏度矩阵;在考虑雅可比子矩阵中功率和电压弱耦合关系的基础上,对传统灵敏度矩阵结构进行修改,更准确地体现了节点之间电气联系的紧密程度,增强了分区结果的合理性;通过凝聚的层次聚类方法得到了包含无功源节点的全网分区结果。文中所提新方法简化了分区的计算步骤,在实现无功源节点与负荷节点同步分区的同时优化了传统PV节点的归并过程。通过对IEEE9节点、IEEE39节点系统的仿真实验,佐证了所提分区方法的有效性。