The parameter reconstruction of strong-scattering media is a challenge for conventional full waveform inversion(FWI).Direct envelope inversion(DEI)is an effective method for large-scale and strongscattering structures...The parameter reconstruction of strong-scattering media is a challenge for conventional full waveform inversion(FWI).Direct envelope inversion(DEI)is an effective method for large-scale and strongscattering structures imaging without the need of low-frequency seismic data.However,the current DEI methods are all based on the acoustic approximation.Whereas,in real cases,seismic records are the combined effects of the subsurface multi-parameters.Therefore,the study of DEI in elastic media is necessary for the accurate inversion of strong-scattering structures,such as salt domes.In this paper,we propose an elastic direct envelope inversion(EDEI)method based on wave mode decomposition.We define the objective function of EDEI using multi-component seismic data and derive its gradient formulation.To reduce the coupling effects of multi-parameters,we introduce the wave mode decomposition method into the gradient calculation of EDEI.The update of Vp is primarily the contributions of decomposed P-waves.Two approaches on Vs gradient calculation are proposed,i.e.using the petrophysical relation and wave mode decomposition method.Finally,we test the proposed method on a layered salt model and the SEG/EAGE salt model.The results show that the proposed EDEI method can reconstruct reliable large-scale Vp and Vs models of strong-scattering salt structures.The successive elastic FWI can obtain high-precision inversion results of the strong-scattering salt model.The proposed method also has a good anti-noise performance in the moderate noise level.展开更多
In order to investigate the permeability of porous media,it is necessary to figure out the property of wave propagation in this medium. The authors calculated the full waveforms and the 2-dimensional spectrum of fluid...In order to investigate the permeability of porous media,it is necessary to figure out the property of wave propagation in this medium. The authors calculated the full waveforms and the 2-dimensional spectrum of fluid saturated porous media,analyzed the wave propagation characteristics of different permeable stratums. From the theoretical acoustic pressure waveform received at the well-axis and the 2-D spectrum it is revealed that longitudinal-,transverse-,Stoneley-,pseudo-Rayleigh-,longitudinal mode-and transverse mode waves are different in characters in various permeable strata. Stoneley wave is sensitive to the change of permeability,and its frequency range and amplitude attenuation are influenced by permeability.展开更多
基金financial support jointly provided by the National Key R&D Program of China under contract number 2019YFC0605503Cthe Major Projects during the 14th Five-year Plan period under contract number 2021QNLM020001+2 种基金the National Outstanding Youth Science Foundation under contract number 41922028the Funds for Creative Research Groups of China under contract number 41821002the Major Projects of CNPC under contract number ZD2019-183-003。
文摘The parameter reconstruction of strong-scattering media is a challenge for conventional full waveform inversion(FWI).Direct envelope inversion(DEI)is an effective method for large-scale and strongscattering structures imaging without the need of low-frequency seismic data.However,the current DEI methods are all based on the acoustic approximation.Whereas,in real cases,seismic records are the combined effects of the subsurface multi-parameters.Therefore,the study of DEI in elastic media is necessary for the accurate inversion of strong-scattering structures,such as salt domes.In this paper,we propose an elastic direct envelope inversion(EDEI)method based on wave mode decomposition.We define the objective function of EDEI using multi-component seismic data and derive its gradient formulation.To reduce the coupling effects of multi-parameters,we introduce the wave mode decomposition method into the gradient calculation of EDEI.The update of Vp is primarily the contributions of decomposed P-waves.Two approaches on Vs gradient calculation are proposed,i.e.using the petrophysical relation and wave mode decomposition method.Finally,we test the proposed method on a layered salt model and the SEG/EAGE salt model.The results show that the proposed EDEI method can reconstruct reliable large-scale Vp and Vs models of strong-scattering salt structures.The successive elastic FWI can obtain high-precision inversion results of the strong-scattering salt model.The proposed method also has a good anti-noise performance in the moderate noise level.
文摘In order to investigate the permeability of porous media,it is necessary to figure out the property of wave propagation in this medium. The authors calculated the full waveforms and the 2-dimensional spectrum of fluid saturated porous media,analyzed the wave propagation characteristics of different permeable stratums. From the theoretical acoustic pressure waveform received at the well-axis and the 2-D spectrum it is revealed that longitudinal-,transverse-,Stoneley-,pseudo-Rayleigh-,longitudinal mode-and transverse mode waves are different in characters in various permeable strata. Stoneley wave is sensitive to the change of permeability,and its frequency range and amplitude attenuation are influenced by permeability.