Narrow fractions of light gas oils obtained from various upgrading processes of Athabasca oilsands bitumen were investigated as diesel and jet fuels. The relationship among the boiling range, cetane number, smoke poin...Narrow fractions of light gas oils obtained from various upgrading processes of Athabasca oilsands bitumen were investigated as diesel and jet fuels. The relationship among the boiling range, cetane number, smoke point, and other properties such as aromatics content, aniline point, and the sulfur and nitrogen content was also studied. The study reveals that when appropriate processes and distillation boiling ranges are selected, oilsands bitumen can produce diesel and jet fuels that meet stringent environmental regulations and future product specifications. New correlations to predict CN and smoke point were developed as a function of density, boiling ranges by simulated distillation, and mono- and total aromatics by supercritical fluid chromatography. The correlations apply to bitumen-derived middle distillates that have a wide range of boiling points.展开更多
A high thermal-stable jet fuel design method was developed using composition-properties relations and basic specification properties of jet fuel. Tannery diagrams were provided to visualize relationships among three m...A high thermal-stable jet fuel design method was developed using composition-properties relations and basic specification properties of jet fuel. Tannery diagrams were provided to visualize relationships among three main components (n-paraffins, iso-paraffins, cycloparaffins, or aromatics) with four major specification properties (density, flash point, freezing point, net heat of combustion) and thermal sta- bility. An optimum chemical composition was established to meet performance requirements: n-paraffins 25%-45%, iso-paraffins 15%-30%, cycloparaffins 30%-50%, and aromatics 5%. The thermal stability test on four fuel samples with and without optimal composition indicated that the thermal stabilities of fuel samples with optimal composition are higher than RP-3 jet fuel, and that the theoretical design method is a reliable method to screen the basic oil for the high thermal-stable jet fuel.展开更多
Coherent jet technology has been widely used in EAF steelmaking process because of the longer potential core length and stronger impacting power of the supersonic oxygen jet. However, more oxygen and fuel gas are cons...Coherent jet technology has been widely used in EAF steelmaking process because of the longer potential core length and stronger impacting power of the supersonic oxygen jet. However, more oxygen and fuel gas are consumed to achieve excel- lent characteristics of coherent jets, which causes the increase in steelmaking cost. Computational fluid dynamics simulation and experimental measurement of the coherent jets with CH4 + N2 mixed fuel gas were carried out aiming at reducing the consumption of fuel gas. The numerical simulation results showed good agreement with the experimental data. As a result, high proportion of N2 negatively affects the combustion of CH4, which is not good for the protection of oxygen jets. While the gas composition is 75% CH4 + 25% N2, the N2 addition to the CH4 leads to an expanding of CH4 combustion zone, and the energy generated by the combustion reaction could be delivered to the molten bath more efficiently, which is one control scheme with high performance-price ratio.展开更多
The jet fuel sample passed through a column packed with neutral alumina powder adsorbent,then the gum adsorbed on the adsorbent was washed out with acetic acid.The gum samples were detected by gas chromatography-mass ...The jet fuel sample passed through a column packed with neutral alumina powder adsorbent,then the gum adsorbed on the adsorbent was washed out with acetic acid.The gum samples were detected by gas chromatography-mass spectrometry with capillary column and pyrolysis chromatography-mass spectrometry.The predominant components in gum are alkyl phenols and aryl esters.展开更多
Experimental analysis was conducted to study the impact of fuel-air mixing and dilution jet on the temperature distribution in a small gas turbine combustor using various optical diagnostic techniques.The strength and...Experimental analysis was conducted to study the impact of fuel-air mixing and dilution jet on the temperature distribution in a small gas turbine combustor using various optical diagnostic techniques.The strength and velocity of the swirler at the venturi exit were adjusted to modify the fuel-air mixture,which is presumed to dominate the heat release of the main combustion zone.Additionally,the dilution hole configuration,including the number and size of the holes,was varied to investigate the dilution effect on outlet temperature distribution.Various optical diagnostic techniques,such as particle image velocimetry,planar Mie scattering,and OH~*chemiluminescence,were used to measure the flow field,fuel spray distribution,and flame structure,respectively.A reduction in swirling strength led to a decrease in the average flow rate in the throat,which improved the structure and symmetry of the axial vortex system in the sleeve,enhanced the mixing of fuel and gas in the dome swirling air,and ultimately,improved the temperature uniformity of the heat release zone.Compared to larger and sparse dilution jets,smaller and dense dilution jets tended to generate hot spots shifted towards the radial middle area.展开更多
文摘Narrow fractions of light gas oils obtained from various upgrading processes of Athabasca oilsands bitumen were investigated as diesel and jet fuels. The relationship among the boiling range, cetane number, smoke point, and other properties such as aromatics content, aniline point, and the sulfur and nitrogen content was also studied. The study reveals that when appropriate processes and distillation boiling ranges are selected, oilsands bitumen can produce diesel and jet fuels that meet stringent environmental regulations and future product specifications. New correlations to predict CN and smoke point were developed as a function of density, boiling ranges by simulated distillation, and mono- and total aromatics by supercritical fluid chromatography. The correlations apply to bitumen-derived middle distillates that have a wide range of boiling points.
基金National Hi-Tech Research and Development 863 Program of China (No. 2005AA723101)China Postdoctoral Science Foundation (No. 2005AA723101)Innovative Research Project of Petrochina Co. Ltd
文摘A high thermal-stable jet fuel design method was developed using composition-properties relations and basic specification properties of jet fuel. Tannery diagrams were provided to visualize relationships among three main components (n-paraffins, iso-paraffins, cycloparaffins, or aromatics) with four major specification properties (density, flash point, freezing point, net heat of combustion) and thermal sta- bility. An optimum chemical composition was established to meet performance requirements: n-paraffins 25%-45%, iso-paraffins 15%-30%, cycloparaffins 30%-50%, and aromatics 5%. The thermal stability test on four fuel samples with and without optimal composition indicated that the thermal stabilities of fuel samples with optimal composition are higher than RP-3 jet fuel, and that the theoretical design method is a reliable method to screen the basic oil for the high thermal-stable jet fuel.
基金This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51574021 and 51474024).
文摘Coherent jet technology has been widely used in EAF steelmaking process because of the longer potential core length and stronger impacting power of the supersonic oxygen jet. However, more oxygen and fuel gas are consumed to achieve excel- lent characteristics of coherent jets, which causes the increase in steelmaking cost. Computational fluid dynamics simulation and experimental measurement of the coherent jets with CH4 + N2 mixed fuel gas were carried out aiming at reducing the consumption of fuel gas. The numerical simulation results showed good agreement with the experimental data. As a result, high proportion of N2 negatively affects the combustion of CH4, which is not good for the protection of oxygen jets. While the gas composition is 75% CH4 + 25% N2, the N2 addition to the CH4 leads to an expanding of CH4 combustion zone, and the energy generated by the combustion reaction could be delivered to the molten bath more efficiently, which is one control scheme with high performance-price ratio.
文摘The jet fuel sample passed through a column packed with neutral alumina powder adsorbent,then the gum adsorbed on the adsorbent was washed out with acetic acid.The gum samples were detected by gas chromatography-mass spectrometry with capillary column and pyrolysis chromatography-mass spectrometry.The predominant components in gum are alkyl phenols and aryl esters.
基金financially supported by the National Science and Technology Major Project(J2019-Ⅲ-0014-0057)the National Natural Science Foundation of China(92041001)。
文摘Experimental analysis was conducted to study the impact of fuel-air mixing and dilution jet on the temperature distribution in a small gas turbine combustor using various optical diagnostic techniques.The strength and velocity of the swirler at the venturi exit were adjusted to modify the fuel-air mixture,which is presumed to dominate the heat release of the main combustion zone.Additionally,the dilution hole configuration,including the number and size of the holes,was varied to investigate the dilution effect on outlet temperature distribution.Various optical diagnostic techniques,such as particle image velocimetry,planar Mie scattering,and OH~*chemiluminescence,were used to measure the flow field,fuel spray distribution,and flame structure,respectively.A reduction in swirling strength led to a decrease in the average flow rate in the throat,which improved the structure and symmetry of the axial vortex system in the sleeve,enhanced the mixing of fuel and gas in the dome swirling air,and ultimately,improved the temperature uniformity of the heat release zone.Compared to larger and sparse dilution jets,smaller and dense dilution jets tended to generate hot spots shifted towards the radial middle area.