In many optical metrology techniques,fringe pattern analysis is the central algorithm for recovering the underlying phase distribution from the recorded fringe patterns.Despite extensive research efforts for decades,h...In many optical metrology techniques,fringe pattern analysis is the central algorithm for recovering the underlying phase distribution from the recorded fringe patterns.Despite extensive research efforts for decades,how to extract the desired phase information,with the highest possible accuracy,from the minimum number of fringe patterns remains one of the most challenging open problems.Inspired by recent successes of deep learning techniques for computer vision and other applications,we demonstrate for the first time,to our knowledge,that the deep neural networks can be trained to perform fringe analysis,which substantially enhances the accuracy of phase demodulation from a single fringe pattern.The effectiveness of the proposed method is experimentally verified using carrier fringe patterns under the scenario of fringe projection profilometry.Experimental results demonstrate its superior performance,in terms of high accuracy and edge-preserving,over two representative single-frame techniques:Fourier transform profilometry and windowed Fourier transform profilometry.展开更多
Single-shot high-speed 3D imaging is important for reconstructions of dynamic objects.For fringe projection profilometry(FPP),however,it is still challenging to recover accurate 3D shapes of isolated objects by a sing...Single-shot high-speed 3D imaging is important for reconstructions of dynamic objects.For fringe projection profilometry(FPP),however,it is still challenging to recover accurate 3D shapes of isolated objects by a single fringe image.In this paper,we demonstrate that the deep neural networks can be trained to directly recover the absolute phase from a unique fringe image that involves spatially multiplexed fringe patterns of different frequencies.The extracted phase is free from spectrum-aliasing problem which is hard to avoid for traditional spatial-multiplexing methods.Experiments on both static and dynamic scenes show that the proposed approach is robust to object motion and can obtain high-quality 3D reconstructions of isolated objects within a single fringe image.展开更多
A rotor CFD solver is developed for simulating the aerodynamic interaction phenomenon among rotor, wing and fuselage of a tilt rotor aircraft in its helicopter mode. The unsteady Navier-Stokes equations are discretize...A rotor CFD solver is developed for simulating the aerodynamic interaction phenomenon among rotor, wing and fuselage of a tilt rotor aircraft in its helicopter mode. The unsteady Navier-Stokes equations are discretized in inertial frame and embedded grid system is adopted for describing the relative motion among blades and nacelle/wing/fuselage. A combination of multi-layer embedded grid and 'extended hole fringe' technique is complemented in original grid system to tackle grid assembly difficulties arising from the narrow space among different aerodynamic components, and to improve the interpolation precision by decreasing the cell volume discrepancy among different grid blocks. An overall donor cell searching and automatic hole cutting technique is used for grid assembly, and the solution processes are speeded up by introduction of OpenMP parallel method. Based on this solver, flow fields and aerodynamics of a tilt rotor aircraft in hover are simulated with several rotor collective angles, and the corresponding states of an isolated rotor and rotor/wing/fuselage model are also computed to obtain reference solution. Aerodynamic interference influences among the rotor and wing/fuselage/nacelle are analyzed, and some meaningful conclusions are drawn. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd.展开更多
This paper discusses current research and development of fringe projection-based techniques. A system based on Fourier transform profilometry (FTP) is proposed for three-dimensional (3D) shape recovery. The system imp...This paper discusses current research and development of fringe projection-based techniques. A system based on Fourier transform profilometry (FTP) is proposed for three-dimensional (3D) shape recovery. The system improves the method of phase unwrapping to gain accurate 3D shapes of objects. The method uses a region-growing algorithm for the path prediction guided by the quality map to increase the recovering accuracy and provides a fast and simple tool for 3D shape recovery. The shape measurement and data recovery are integrated to offer a new method of 3D modelling. Examples are presented to verify the feasibility of the proposed method.展开更多
In response to the strong drive for social and economic development, local governments have implemented urban master plans, providing measures and timeframes to address the continuous demand for land and to alleviate ...In response to the strong drive for social and economic development, local governments have implemented urban master plans, providing measures and timeframes to address the continuous demand for land and to alleviate urban problems. In this paper, a multi-objective model was constructed to discuss the problem, including economic benefits and ecological effectiveness, in terms of land use optimization. A genetic algorithm was then adopted to solve the model, and a performance evaluation and sensitivity analysis were conducted using Pareto optimality. Results showed that a set of tradeoffs could be acquired by the allocation of land use. In addition, the Pareto solutions proved the model to be efficient; for example, a limit of 13,500 ha of urban area conformed to plan recommendations. The reduction in crop land, orchard land, grassland, and unused land provided further efficiencies. These results implied that further potential regional land resources remain and that the urban master plan is able to support sustainable local development in the years to come, as well as verified that it is feasible to use land use allocation multi-objective modeling and genetic algorithms.展开更多
Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this...Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this work, we propose a convenient look-up-table-based (LUT-based) method to compensate for the non-linear error in captured fringe patterns. Without extra calibration, this LUT-based method completely utilizes the captured fringe pattern by recording the full-field differences. Then, a phase compensation map is established to revise the measured phase. Experimental results demonstrate that this method works effectively.展开更多
The objective of this paper is to analyze land use characteristics of rural settlements in urban fringe so as to provide references for optimizing the regional distribution of rural settlements, consolidating rural se...The objective of this paper is to analyze land use characteristics of rural settlements in urban fringe so as to provide references for optimizing the regional distribution of rural settlements, consolidating rural settlements, and coordinating urban-rural integrated development. The methods of spatial statistical analysis, buffer analysis, Ripley's K function, kernel density analysis based on GIS(Geographic Information System) were used to analyze the characteristics of scale, spatial differentiation and spatial patterns of the rural settlements in Liangjiang New Area in Chongqing Municipality of China. The fractal dimension formula was also developed to reflect fractal feature of the rural settlements. The results show that, the scale of rural settlements in Liangjang New Area takes on distinct characteristics of spatial differentiation along with changes in elevation, gradient, location, geohazards distribution, and the like. The fractal characteristic of rural settlements has obvious regional variations subject to the 6 factors of location in the Liangjiang New Area. Overall, the worse the terrain conditions are, the larger the fractal dimension values become. The better the locationconditions, the larger the fractal dimension values are. The spatial pattern in the township scale presents three kinds of distribution as being aggregated, uniform and random. In contract, the spatial pattern in the plaque scale displays a banding distribution from a general view with several aggregation zones centering on each town center. From the results, we can see that the characteristics of rural settlements in urban fringe are more complicated. For such kind of rural settlements in special regions, in the rural land consolidation more attention should be paid to improve the rural living environments and public services, as well as to promote the harmonious relationship between the urban and rural areas.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(61722506,61705105,and 11574152)the National Key R&D Program of China(2017YFF0106403)+2 种基金the Outstanding Youth Foundation of Jiangsu Province(BK20170034)the China Postdoctoral Science Foundation(2017M621747)the Jiangsu Planned Projects for Postdoctoral Research Funds(1701038A).
文摘In many optical metrology techniques,fringe pattern analysis is the central algorithm for recovering the underlying phase distribution from the recorded fringe patterns.Despite extensive research efforts for decades,how to extract the desired phase information,with the highest possible accuracy,from the minimum number of fringe patterns remains one of the most challenging open problems.Inspired by recent successes of deep learning techniques for computer vision and other applications,we demonstrate for the first time,to our knowledge,that the deep neural networks can be trained to perform fringe analysis,which substantially enhances the accuracy of phase demodulation from a single fringe pattern.The effectiveness of the proposed method is experimentally verified using carrier fringe patterns under the scenario of fringe projection profilometry.Experimental results demonstrate its superior performance,in terms of high accuracy and edge-preserving,over two representative single-frame techniques:Fourier transform profilometry and windowed Fourier transform profilometry.
基金This work was supported by National Natural Science Foundation of China(62075096,62005121,U21B2033)Leading Technology of Jiangsu Basic Research Plan(BK20192003)+4 种基金“333 Engineering”Research Project of Jiangsu Province(BRA2016407)Jiangsu Provincial“One belt and one road”innovation cooperation project(BZ2020007)Fundamental Research Funds for the Central Universities(30921011208,30919011222,30920032101)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX21_0273)Open Research Fund of Jiangsu Key Laboratory of Spectral Imaging&Intelligent Sense(JSGP202105).
文摘Single-shot high-speed 3D imaging is important for reconstructions of dynamic objects.For fringe projection profilometry(FPP),however,it is still challenging to recover accurate 3D shapes of isolated objects by a single fringe image.In this paper,we demonstrate that the deep neural networks can be trained to directly recover the absolute phase from a unique fringe image that involves spatially multiplexed fringe patterns of different frequencies.The extracted phase is free from spectrum-aliasing problem which is hard to avoid for traditional spatial-multiplexing methods.Experiments on both static and dynamic scenes show that the proposed approach is robust to object motion and can obtain high-quality 3D reconstructions of isolated objects within a single fringe image.
文摘A rotor CFD solver is developed for simulating the aerodynamic interaction phenomenon among rotor, wing and fuselage of a tilt rotor aircraft in its helicopter mode. The unsteady Navier-Stokes equations are discretized in inertial frame and embedded grid system is adopted for describing the relative motion among blades and nacelle/wing/fuselage. A combination of multi-layer embedded grid and 'extended hole fringe' technique is complemented in original grid system to tackle grid assembly difficulties arising from the narrow space among different aerodynamic components, and to improve the interpolation precision by decreasing the cell volume discrepancy among different grid blocks. An overall donor cell searching and automatic hole cutting technique is used for grid assembly, and the solution processes are speeded up by introduction of OpenMP parallel method. Based on this solver, flow fields and aerodynamics of a tilt rotor aircraft in hover are simulated with several rotor collective angles, and the corresponding states of an isolated rotor and rotor/wing/fuselage model are also computed to obtain reference solution. Aerodynamic interference influences among the rotor and wing/fuselage/nacelle are analyzed, and some meaningful conclusions are drawn. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd.
基金Project (No. 59965003) supported by the National Natural ScienceFoundation of China
文摘This paper discusses current research and development of fringe projection-based techniques. A system based on Fourier transform profilometry (FTP) is proposed for three-dimensional (3D) shape recovery. The system improves the method of phase unwrapping to gain accurate 3D shapes of objects. The method uses a region-growing algorithm for the path prediction guided by the quality map to increase the recovering accuracy and provides a fast and simple tool for 3D shape recovery. The shape measurement and data recovery are integrated to offer a new method of 3D modelling. Examples are presented to verify the feasibility of the proposed method.
基金National Natural Science Foundation of China,No.41130748 No.41171070+2 种基金 China Postdoctoral Science Foundation,No.200902132 No.20080440511 The Humanities and Social Sciences Project of Ministry of Education,PRC,No.10YJCZH031
文摘In response to the strong drive for social and economic development, local governments have implemented urban master plans, providing measures and timeframes to address the continuous demand for land and to alleviate urban problems. In this paper, a multi-objective model was constructed to discuss the problem, including economic benefits and ecological effectiveness, in terms of land use optimization. A genetic algorithm was then adopted to solve the model, and a performance evaluation and sensitivity analysis were conducted using Pareto optimality. Results showed that a set of tradeoffs could be acquired by the allocation of land use. In addition, the Pareto solutions proved the model to be efficient; for example, a limit of 13,500 ha of urban area conformed to plan recommendations. The reduction in crop land, orchard land, grassland, and unused land provided further efficiencies. These results implied that further potential regional land resources remain and that the urban master plan is able to support sustainable local development in the years to come, as well as verified that it is feasible to use land use allocation multi-objective modeling and genetic algorithms.
基金the financial support provided by the National Natural Science Foundation of China(11472267 and 11372182)the National Basic Research Program of China(2012CB937504)
文摘Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this work, we propose a convenient look-up-table-based (LUT-based) method to compensate for the non-linear error in captured fringe patterns. Without extra calibration, this LUT-based method completely utilizes the captured fringe pattern by recording the full-field differences. Then, a phase compensation map is established to revise the measured phase. Experimental results demonstrate that this method works effectively.
基金partially supported by the special funding of the Ministry of National Land and Resources Public Welfare Industry (2013110604)
文摘The objective of this paper is to analyze land use characteristics of rural settlements in urban fringe so as to provide references for optimizing the regional distribution of rural settlements, consolidating rural settlements, and coordinating urban-rural integrated development. The methods of spatial statistical analysis, buffer analysis, Ripley's K function, kernel density analysis based on GIS(Geographic Information System) were used to analyze the characteristics of scale, spatial differentiation and spatial patterns of the rural settlements in Liangjiang New Area in Chongqing Municipality of China. The fractal dimension formula was also developed to reflect fractal feature of the rural settlements. The results show that, the scale of rural settlements in Liangjang New Area takes on distinct characteristics of spatial differentiation along with changes in elevation, gradient, location, geohazards distribution, and the like. The fractal characteristic of rural settlements has obvious regional variations subject to the 6 factors of location in the Liangjiang New Area. Overall, the worse the terrain conditions are, the larger the fractal dimension values become. The better the locationconditions, the larger the fractal dimension values are. The spatial pattern in the township scale presents three kinds of distribution as being aggregated, uniform and random. In contract, the spatial pattern in the plaque scale displays a banding distribution from a general view with several aggregation zones centering on each town center. From the results, we can see that the characteristics of rural settlements in urban fringe are more complicated. For such kind of rural settlements in special regions, in the rural land consolidation more attention should be paid to improve the rural living environments and public services, as well as to promote the harmonious relationship between the urban and rural areas.