A multi-body dynamic rigid-flexible coupling model of landing gear is established to study the gear walk instability caused by the friction characteristics of the brake disc.After validating the model with the experim...A multi-body dynamic rigid-flexible coupling model of landing gear is established to study the gear walk instability caused by the friction characteristics of the brake disc.After validating the model with the experimental results,the influence of the landing gear structure and braking system parameters on gear walk is further investigated.Among the above factors,the slope of the graph for the friction coefficient of the brake disc and the relative velocity of brake stators and rotors is the most influential factor on gear walk instability.Phase trajectory analysis verifies that gear walk occurs when the coupling of multiple factors causes the system to exhibit an equivalent negative damping trend.To consider a more realistic braking case,a back propagation neural network method is employed to describe the nonlinear behavior of the friction coefficient of the brake disc.With the realistic nonlinear model of the friction coefficient,the maximum error in predicting the braking torque is less than 10%and the effect of the brake disc temperature on gear walk is performed.The results reveal that a more negative friction slope may contribute to a more severe unstable gear walk,and reducing the braking pressure is an effective approach to avoid gear walk,which provides help for future braking system design.展开更多
In this paper,a physical base friction test model of a slope is established.The model is based on similarity principles and the geological conditions of a complicated bridge slope during construction,deformation and f...In this paper,a physical base friction test model of a slope is established.The model is based on similarity principles and the geological conditions of a complicated bridge slope during construction,deformation and failure.The behavior of the slope in both its natural state and during excavation loading is qualitatively analyzed through base friction tests.The base friction test results are then subjected to comparison and analysis using finite element numerical simulation.The findings show that the whole engineered slope tends to stabilize in its natural state,whereas instabilities will arise at faulted rock masses located near bridge piers during excavation loading.Therefore,to ensure normal construction operation of bridge works,it is suggested that pre-reinforcement of faulted rock masses be performed.展开更多
This paper is a sequel to Tian’s (1994) preceding paper in which the blow-up theory was sug gested for finding an analytical (as opposed to a numerical) description of long-wave breaking. The pre sent long-wave break...This paper is a sequel to Tian’s (1994) preceding paper in which the blow-up theory was sug gested for finding an analytical (as opposed to a numerical) description of long-wave breaking. The pre sent long-wave breaking numerical results agree quite well with the author’s previous analytical and theo retical results.展开更多
A set of new parameterizations for the friction velocity and temperature scale over gently sloped terrain and in calm synoptic conditions are theoretically derived. The friction velocity is found to be proportional to...A set of new parameterizations for the friction velocity and temperature scale over gently sloped terrain and in calm synoptic conditions are theoretically derived. The friction velocity is found to be proportional to the product of the square root of the total accumulated heating in the boundary layer and the sinusoidal function of the slope angle, while the temperature scale is proportional to the product of the boundary layer depth, the sinusoidal function of the slope angle and the potential temperature gradient in the free atmosphere. Using the new friction velocity parameterization, together with a parameterization of eddy diffusivity and an initial potential temperature profile around sunrise, an improved parameterization for the thermally induced upslope flow profile is derived by solving the Prandtl equations. The upslope flow profile is found to be simply proportional to the friction velocity.展开更多
The propagation of long-waves, such as tidal waves from the coastal oceam into shallow estuarine waters,often produces asymmetries of veolcity and water level in time series resulting in long-wave breaking.Tian (1994)...The propagation of long-waves, such as tidal waves from the coastal oceam into shallow estuarine waters,often produces asymmetries of veolcity and water level in time series resulting in long-wave breaking.Tian (1994) studied the mechanism of long-wave breaking in an infinite channel with constant depth,considering nth power bottom friction. This study is for the case of a half infinite channel with bottomslope, taking linear bottom friction into account. The wave breaking time and wave breaking location areestimated and the criteria for long-wave breaking in this particular case are obtained. The results obtainedcan also be e asily applied to the case considering wind stress.展开更多
基金the National Natural Science Foundation of China(No.11872312)the Program of Introducing Talents of Discipline to Universities,China(No.BP0719007)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China(No.CX2022002)。
文摘A multi-body dynamic rigid-flexible coupling model of landing gear is established to study the gear walk instability caused by the friction characteristics of the brake disc.After validating the model with the experimental results,the influence of the landing gear structure and braking system parameters on gear walk is further investigated.Among the above factors,the slope of the graph for the friction coefficient of the brake disc and the relative velocity of brake stators and rotors is the most influential factor on gear walk instability.Phase trajectory analysis verifies that gear walk occurs when the coupling of multiple factors causes the system to exhibit an equivalent negative damping trend.To consider a more realistic braking case,a back propagation neural network method is employed to describe the nonlinear behavior of the friction coefficient of the brake disc.With the realistic nonlinear model of the friction coefficient,the maximum error in predicting the braking torque is less than 10%and the effect of the brake disc temperature on gear walk is performed.The results reveal that a more negative friction slope may contribute to a more severe unstable gear walk,and reducing the braking pressure is an effective approach to avoid gear walk,which provides help for future braking system design.
基金The authors gratefully acknowledge the financial support of this work,which was provided by the National Natural Science Foundation of China(Grant Nos.41172260 and 51108393)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110184110018)the National Basic Research Program of China(No.2008CB425801).
文摘In this paper,a physical base friction test model of a slope is established.The model is based on similarity principles and the geological conditions of a complicated bridge slope during construction,deformation and failure.The behavior of the slope in both its natural state and during excavation loading is qualitatively analyzed through base friction tests.The base friction test results are then subjected to comparison and analysis using finite element numerical simulation.The findings show that the whole engineered slope tends to stabilize in its natural state,whereas instabilities will arise at faulted rock masses located near bridge piers during excavation loading.Therefore,to ensure normal construction operation of bridge works,it is suggested that pre-reinforcement of faulted rock masses be performed.
文摘This paper is a sequel to Tian’s (1994) preceding paper in which the blow-up theory was sug gested for finding an analytical (as opposed to a numerical) description of long-wave breaking. The pre sent long-wave breaking numerical results agree quite well with the author’s previous analytical and theo retical results.
基金supported by the National Natural Science Foundation of China(Grant No. 40233032)Ministry of Science and Tech-nology (Grant No. 2006BAB18B03 and Grant No.2006BAB18B05)Office of Naval Research (Grant No.N0001409WR20177)
文摘A set of new parameterizations for the friction velocity and temperature scale over gently sloped terrain and in calm synoptic conditions are theoretically derived. The friction velocity is found to be proportional to the product of the square root of the total accumulated heating in the boundary layer and the sinusoidal function of the slope angle, while the temperature scale is proportional to the product of the boundary layer depth, the sinusoidal function of the slope angle and the potential temperature gradient in the free atmosphere. Using the new friction velocity parameterization, together with a parameterization of eddy diffusivity and an initial potential temperature profile around sunrise, an improved parameterization for the thermally induced upslope flow profile is derived by solving the Prandtl equations. The upslope flow profile is found to be simply proportional to the friction velocity.
文摘The propagation of long-waves, such as tidal waves from the coastal oceam into shallow estuarine waters,often produces asymmetries of veolcity and water level in time series resulting in long-wave breaking.Tian (1994) studied the mechanism of long-wave breaking in an infinite channel with constant depth,considering nth power bottom friction. This study is for the case of a half infinite channel with bottomslope, taking linear bottom friction into account. The wave breaking time and wave breaking location areestimated and the criteria for long-wave breaking in this particular case are obtained. The results obtainedcan also be e asily applied to the case considering wind stress.