A new method was developed by a thermal wear machine to evaluate the thermal wear of roils in steel rolling process. The steel strip and rolls were simulated by upper and lower heating disks. The upper heating disk co...A new method was developed by a thermal wear machine to evaluate the thermal wear of roils in steel rolling process. The steel strip and rolls were simulated by upper and lower heating disks. The upper heating disk could he kept at a temperature of over 900 ℃ by induction heating. The pressure between the disks as high as 323.2 MPa could be achieved and the slipping rate could be 12. 7 %. The thermal wear of high speed steel (HSS) roll material, the wear rate of the HSS roll, and the SEM morphology of a worn HSS roll surface were investigated. This method was useful and could be employed to simulate friction and wear between strip and roll during the strip rolling process.展开更多
The compressive behaviors of medium carbon steel specimens were investigated over a wide range of tem- peratures and strain rates using a Gleeble-3500 thermo-simulation machine. The results show that the flow stress i...The compressive behaviors of medium carbon steel specimens were investigated over a wide range of tem- peratures and strain rates using a Gleeble-3500 thermo-simulation machine. The results show that the flow stress in- creased with strain at first, and then gradually decreased after reaching a peak value. The flow stress softening rate at a high strain rate was larger than that at a low strain rate. The effects of deformation heating and friction on flow stress were analyzed. A new friction correction method, wherein the effect of strain on frictional coefficient was con- sidered, was established here. The stresses revised by the new method deviated from the measured stresses with in- creasing strain. Meanwhile, the apparent frictional coefficient variation law with strain was obtained. The frictional coefficient increased as the strain increased and then slightly decreased after maintaining a constant value. The stress was corrected by considering deformation heating. The accuracy of the temperature correction method was verified using a special experiment. The results of the verification experiment show that the temperature correction method exhibited a good accuracy in calculating the variation of stress caused by deformation heating. A constitutive model considering strain was proposed here to describe the deformation behaviors. Compared with experimental data, the modified constitutive model exhibited a good accuracy as to constitutive correlation.展开更多
We examine a convective dissipation-free heat transfer in melts under the action of a stationary component of electromagnetic body force induced by frequency-modulated travelling magnetic field.The influence of MHD pa...We examine a convective dissipation-free heat transfer in melts under the action of a stationary component of electromagnetic body force induced by frequency-modulated travelling magnetic field.The influence of MHD parameters of turbulent flow on the transfer process is studied.展开更多
In the framework of the finite element method (FEM), a prediction method for the heating rate and the skin friction on a body surface is presented by using the energy and momentum conservation equations respectively. ...In the framework of the finite element method (FEM), a prediction method for the heating rate and the skin friction on a body surface is presented by using the energy and momentum conservation equations respectively. Meanwhile, a brief analysis is made of the role the weighted functions play in the present work.展开更多
基金Item Sponsored by National Natural Science Foundation of China(50534020)
文摘A new method was developed by a thermal wear machine to evaluate the thermal wear of roils in steel rolling process. The steel strip and rolls were simulated by upper and lower heating disks. The upper heating disk could he kept at a temperature of over 900 ℃ by induction heating. The pressure between the disks as high as 323.2 MPa could be achieved and the slipping rate could be 12. 7 %. The thermal wear of high speed steel (HSS) roll material, the wear rate of the HSS roll, and the SEM morphology of a worn HSS roll surface were investigated. This method was useful and could be employed to simulate friction and wear between strip and roll during the strip rolling process.
基金Sponsored by National Natural Science Foundation of China(51474092)Iron and Steel Joint Funds of Hebei Province of China(E2015209243)Innovation Team Leading Talent in Universities Cultivation Plan of Hebei Province of China(LJRC007)
文摘The compressive behaviors of medium carbon steel specimens were investigated over a wide range of tem- peratures and strain rates using a Gleeble-3500 thermo-simulation machine. The results show that the flow stress in- creased with strain at first, and then gradually decreased after reaching a peak value. The flow stress softening rate at a high strain rate was larger than that at a low strain rate. The effects of deformation heating and friction on flow stress were analyzed. A new friction correction method, wherein the effect of strain on frictional coefficient was con- sidered, was established here. The stresses revised by the new method deviated from the measured stresses with in- creasing strain. Meanwhile, the apparent frictional coefficient variation law with strain was obtained. The frictional coefficient increased as the strain increased and then slightly decreased after maintaining a constant value. The stress was corrected by considering deformation heating. The accuracy of the temperature correction method was verified using a special experiment. The results of the verification experiment show that the temperature correction method exhibited a good accuracy in calculating the variation of stress caused by deformation heating. A constitutive model considering strain was proposed here to describe the deformation behaviors. Compared with experimental data, the modified constitutive model exhibited a good accuracy as to constitutive correlation.
文摘We examine a convective dissipation-free heat transfer in melts under the action of a stationary component of electromagnetic body force induced by frequency-modulated travelling magnetic field.The influence of MHD parameters of turbulent flow on the transfer process is studied.
基金The project supported by the National Natural Science Foundation of China (19889210)
文摘In the framework of the finite element method (FEM), a prediction method for the heating rate and the skin friction on a body surface is presented by using the energy and momentum conservation equations respectively. Meanwhile, a brief analysis is made of the role the weighted functions play in the present work.