Calculations of the impact of friction and wear on energy consumption,economic expenditure,and CO2 emissions are presented on a global scale.This impact study covers the four main energy consuming sectors:transportati...Calculations of the impact of friction and wear on energy consumption,economic expenditure,and CO2 emissions are presented on a global scale.This impact study covers the four main energy consuming sectors:transportation,manufacturing,power generation,and residential.Previously published four case studies on passenger cars,trucks and buses,paper machines and the mining industry were included in our detailed calculations as reference data in our current analyses.The following can be concluded:-In total,~23% (119 EJ) of the world's total energy consumption originates from tribological contacts.Of that 20% (103 EJ) is used to overcome friction and 3% (16 EJ) is used to remanufacture worn parts and spare equipment due to wear and wear-related failures.-By taking advantage of the new surface,materials,and lubrication technologies for friction reduction and wear protection in vehicles,machinery and other equipment worldwide,energy losses due to friction and wear could potentially be reduced by 40% in the long term (15 years)and by 18% in the short term (8 years).On global scale,these savings would amount to 1.4% of the GDP annually and 8.7% of the total energy consumption in the long term.-The largest short term energy savings are envisioned in transportation (25%) and in the power generation (20%) while the potential savings in the manufacturing and residential sectors are estimated to be ~10%.In the longer terms,the savings would be 55%,40%,25%,and 20%,respectively.-Implementing advanced tribological technologies can also reduce the CO2 emissions globally by as much as 1,460 MtCO2 and result in 450,000 million Euros cost savings in the short term.In the longer term,the reduction can be 3,140 MtCO2 and the cost savings 970,000 million Euros.Fifty years ago,wear and wear-related failures were a major concern for UK industry and their mitigation was considered to be the major contributor to potential economic savings by as much as 95% in ten years by the development and deployment of new展开更多
Friction stir welding [FSW) has achieved remarkable success in the joining and processing of aluminium alloys and other softer structural alloys. Conventional FSW, however, has not been entirely successful in the joi...Friction stir welding [FSW) has achieved remarkable success in the joining and processing of aluminium alloys and other softer structural alloys. Conventional FSW, however, has not been entirely successful in the joining, processing and manufacturing of different desired materials essential to meet the sophis- ticated green globe requirements. Through the efforts of improving the process and transferring the existing friction stir knowledge base to other advanced applications, several friction stir based daughter technologies have emerged over the timeline, A few among these technologies are well developed while others are under the process of emergence. Beginning with a broad classification of the scattered fric- tions stir based technologies into two categories, welding and processing, it appears now time to know, compile and review these to enable their rapid access for reference and academia. In this review article, the friction stir based technologies classified under the categol^J of welding are those applied for join- ing of materials while the remnant are labeled as friction stir processing (FSP) technologies. This review article presents an overview of four general aspects of both the developed and the developing friction stir based technologies, their associated process parameters, metallurgical features of their products and their feasibility and application to various materials. The lesser known and emerging technologies have been emphasized.展开更多
文摘Calculations of the impact of friction and wear on energy consumption,economic expenditure,and CO2 emissions are presented on a global scale.This impact study covers the four main energy consuming sectors:transportation,manufacturing,power generation,and residential.Previously published four case studies on passenger cars,trucks and buses,paper machines and the mining industry were included in our detailed calculations as reference data in our current analyses.The following can be concluded:-In total,~23% (119 EJ) of the world's total energy consumption originates from tribological contacts.Of that 20% (103 EJ) is used to overcome friction and 3% (16 EJ) is used to remanufacture worn parts and spare equipment due to wear and wear-related failures.-By taking advantage of the new surface,materials,and lubrication technologies for friction reduction and wear protection in vehicles,machinery and other equipment worldwide,energy losses due to friction and wear could potentially be reduced by 40% in the long term (15 years)and by 18% in the short term (8 years).On global scale,these savings would amount to 1.4% of the GDP annually and 8.7% of the total energy consumption in the long term.-The largest short term energy savings are envisioned in transportation (25%) and in the power generation (20%) while the potential savings in the manufacturing and residential sectors are estimated to be ~10%.In the longer terms,the savings would be 55%,40%,25%,and 20%,respectively.-Implementing advanced tribological technologies can also reduce the CO2 emissions globally by as much as 1,460 MtCO2 and result in 450,000 million Euros cost savings in the short term.In the longer term,the reduction can be 3,140 MtCO2 and the cost savings 970,000 million Euros.Fifty years ago,wear and wear-related failures were a major concern for UK industry and their mitigation was considered to be the major contributor to potential economic savings by as much as 95% in ten years by the development and deployment of new
基金financial support on this work from the National Natural Science Foundation of China(Grant Nos.51475272 and 51550110501)Shandong University for the Postdoctoral fellowship
文摘Friction stir welding [FSW) has achieved remarkable success in the joining and processing of aluminium alloys and other softer structural alloys. Conventional FSW, however, has not been entirely successful in the joining, processing and manufacturing of different desired materials essential to meet the sophis- ticated green globe requirements. Through the efforts of improving the process and transferring the existing friction stir knowledge base to other advanced applications, several friction stir based daughter technologies have emerged over the timeline, A few among these technologies are well developed while others are under the process of emergence. Beginning with a broad classification of the scattered fric- tions stir based technologies into two categories, welding and processing, it appears now time to know, compile and review these to enable their rapid access for reference and academia. In this review article, the friction stir based technologies classified under the categol^J of welding are those applied for join- ing of materials while the remnant are labeled as friction stir processing (FSP) technologies. This review article presents an overview of four general aspects of both the developed and the developing friction stir based technologies, their associated process parameters, metallurgical features of their products and their feasibility and application to various materials. The lesser known and emerging technologies have been emphasized.