An experiments were carried out with treatments differing in nitrogen supply (0, 5 and 15 g N/m^2) and CO2 levels (350 and 700 μmol/mol) using OTC (open top chamber) equipment to investigate the biomass of Cala...An experiments were carried out with treatments differing in nitrogen supply (0, 5 and 15 g N/m^2) and CO2 levels (350 and 700 μmol/mol) using OTC (open top chamber) equipment to investigate the biomass of Calamagrostis angustifolia and soil active carbon contents after two years. The results showed that elevated CO2 concentration increased the biomass of C. angustifolia and the magnitude of response varied with each growth period. Elevated CO2 concentration has increased aboveground biomass by 16.7% and 17.6% during the jointing and heading periods and only 3.5% and 9.4% during dough and maturity periods. The increases in belowground biomass due to CO2 elevation was 26.5%, 34.0% and 28.7% during the heading, dough and maturity periods, respectively. The responses of biomass to enhanced CO2 concentrations are differed in N levels. Both the increase of aboveground biomass and belowground biomass were greater under high level of N supply (15 g N/m^2). Elevated CO2 concentration also increased the allocation of biomass and carbon in root. Under elevated CO2 concentration, the average values of active carbon tended to increase. The increases of soil active soil contents followed the sequence of microbial biomass carbon (10.6%) 〉 dissolved organic carbon (7.5%) 〉 labile oxidable carbon (6.6%) 〉 carbohydrate carbon (4.1%). Stepwise regressions indicated there were significant correlations between the soil active carbon contents and plant biomass. Particularly, microbial biomass carbon, labile oxidable carbon and carbohydrate carbon were found to be correlated with belowground biomass, while dissolved organic carbon has correlation with aboveground biomass. Therefore, increased biomass was regarded as the main driving force for the increase in soil active organic carbon under elevated CO2 concentration.展开更多
Nitrous oxide (N2O) and methane (CH4) emissions were measured using a static chamber method in two adjacent plots of freshwater marsh predominated by Calamagrostis angustifolia, one is seasonal waterlogged (SW) and th...Nitrous oxide (N2O) and methane (CH4) emissions were measured using a static chamber method in two adjacent plots of freshwater marsh predominated by Calamagrostis angustifolia, one is seasonal waterlogged (SW) and the other without surface water accumulation (NW), in Sanjiang Plain wetland (47°35′N, 133°31′E), northeast China, during 2002-2004. The diurnal and seasonal flux variations of both gases were significantly correlated with 5-cm-soil temperature. The NW marsh is a source of N2O and sink of CH4, while the SW marsh is sink of N2O and source of CH4. Remarkably, we observed a N2O emission peak under Eh of +300 to +100 mV, and CH4 emission peak under Eh of +300 to +400 mV, which indicate additional sources of N2O and CH4 for the freeze-thaw induced emission peaks of N2O and CH4 observed between late July and early August. Further study shows that the additional N2O and CH4 were emitted under the frozen soil after thawing.展开更多
Natural wetlands are known to store huge amounts of organic carbon in their soils. Despite the importance of this storage,uncertainties remain about the molecular characteristics of soil organic matter(SOM), a key fac...Natural wetlands are known to store huge amounts of organic carbon in their soils. Despite the importance of this storage,uncertainties remain about the molecular characteristics of soil organic matter(SOM), a key factor governing the stability of soil organic carbon(SOC). In this study, the molecular fingerprints of SOM in a typical freshwater wetland in Northeast China were investigated using pyrolysis gas-chromatography/mass-spectrometry technology(Py-GC/MS). Results indicated that the SOC, total nitrogen(TN),and total sulfur contents of the cores varied between 16.88% and 45.83%, 0.93% and 2.82%, and 1.09% and 3.79%, respectively. The bulk δ^13C and δ^15N varied over a range of 9.85‰, between –26.85‰ and –17.00‰, and between –0.126‰ and 1.002‰, respectively. A total of 134 different pyrolytic products were identified, and they were grouped into alkyl(including n-alkanes(C:0) and n-alkenes(C:1),aliphatics(Al), aromatics(Ar), lignin(Lg), nitrogen-containing compounds(Nc), polycyclic aromatic hydrocarbons(PAHs), phenols(Phs), polysaccharides(Ps), and sulfur-containing compounds(Sc). On average, Phs moieties accounted for roughly 24.11% peak areas of the total pyrolysis products, followed by Lg(19.27%), alkyl(18.96%), other aliphatics(12.39%), Nc compounds(8.08%), Ps(6.49%), aromatics(6.32%), Sc(3.26%), and PAHs(1.12%). Soil organic matter from wetlands had more Phs and Lg and less Nc moieties in pyrolytic products than soil organic matters from forests, lake sediments, pastures, and farmland.δ^13 C distribution patterns implied more C3 plant-derived soil organic matter, but the vegetation was in succession to C4 plant from C3 plant. Significant negative correlations between Lg or Ps proportions and C3 plant proportions were observed. Multiple linear analyses implied that the Ar and Al components had negative effects on SOC. Alkyl and Ar could facilitate ratios between SOC and total nitrogen(C/N), while Al plays the opposite role. Al was positively related to the ratio of dissolved organic carb展开更多
基金supported by the Chinese Academy of Sciences (No KZCX2-YW-309)the National Basic Research Program (973) of China (No 2004CB418507)
文摘An experiments were carried out with treatments differing in nitrogen supply (0, 5 and 15 g N/m^2) and CO2 levels (350 and 700 μmol/mol) using OTC (open top chamber) equipment to investigate the biomass of Calamagrostis angustifolia and soil active carbon contents after two years. The results showed that elevated CO2 concentration increased the biomass of C. angustifolia and the magnitude of response varied with each growth period. Elevated CO2 concentration has increased aboveground biomass by 16.7% and 17.6% during the jointing and heading periods and only 3.5% and 9.4% during dough and maturity periods. The increases in belowground biomass due to CO2 elevation was 26.5%, 34.0% and 28.7% during the heading, dough and maturity periods, respectively. The responses of biomass to enhanced CO2 concentrations are differed in N levels. Both the increase of aboveground biomass and belowground biomass were greater under high level of N supply (15 g N/m^2). Elevated CO2 concentration also increased the allocation of biomass and carbon in root. Under elevated CO2 concentration, the average values of active carbon tended to increase. The increases of soil active soil contents followed the sequence of microbial biomass carbon (10.6%) 〉 dissolved organic carbon (7.5%) 〉 labile oxidable carbon (6.6%) 〉 carbohydrate carbon (4.1%). Stepwise regressions indicated there were significant correlations between the soil active carbon contents and plant biomass. Particularly, microbial biomass carbon, labile oxidable carbon and carbohydrate carbon were found to be correlated with belowground biomass, while dissolved organic carbon has correlation with aboveground biomass. Therefore, increased biomass was regarded as the main driving force for the increase in soil active organic carbon under elevated CO2 concentration.
基金supported by Knowledge Innovation Project of the Chinese Academy of Sciences (Grant Nos. KZCX2-YW-223, KZCX2-YW-309)the CAS/SAFEA International Partnership Program for Creative Research Teams, National Natural Science Foundation of China(Grant No. 40873062)the 100 Talents Program of the Chinese Academy of Sciences and the Science and Technology Development Program Project of Shandong Province (Grant Nos. 2008GG20005006 and 2008GG3NS07005)
文摘Nitrous oxide (N2O) and methane (CH4) emissions were measured using a static chamber method in two adjacent plots of freshwater marsh predominated by Calamagrostis angustifolia, one is seasonal waterlogged (SW) and the other without surface water accumulation (NW), in Sanjiang Plain wetland (47°35′N, 133°31′E), northeast China, during 2002-2004. The diurnal and seasonal flux variations of both gases were significantly correlated with 5-cm-soil temperature. The NW marsh is a source of N2O and sink of CH4, while the SW marsh is sink of N2O and source of CH4. Remarkably, we observed a N2O emission peak under Eh of +300 to +100 mV, and CH4 emission peak under Eh of +300 to +400 mV, which indicate additional sources of N2O and CH4 for the freeze-thaw induced emission peaks of N2O and CH4 observed between late July and early August. Further study shows that the additional N2O and CH4 were emitted under the frozen soil after thawing.
基金Under the auspices of the National Key R&D Program of China(No.2016YFC0500404)the National Natural Science Foundation of China(No.41671087,41671081,41771103)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2018265)
文摘Natural wetlands are known to store huge amounts of organic carbon in their soils. Despite the importance of this storage,uncertainties remain about the molecular characteristics of soil organic matter(SOM), a key factor governing the stability of soil organic carbon(SOC). In this study, the molecular fingerprints of SOM in a typical freshwater wetland in Northeast China were investigated using pyrolysis gas-chromatography/mass-spectrometry technology(Py-GC/MS). Results indicated that the SOC, total nitrogen(TN),and total sulfur contents of the cores varied between 16.88% and 45.83%, 0.93% and 2.82%, and 1.09% and 3.79%, respectively. The bulk δ^13C and δ^15N varied over a range of 9.85‰, between –26.85‰ and –17.00‰, and between –0.126‰ and 1.002‰, respectively. A total of 134 different pyrolytic products were identified, and they were grouped into alkyl(including n-alkanes(C:0) and n-alkenes(C:1),aliphatics(Al), aromatics(Ar), lignin(Lg), nitrogen-containing compounds(Nc), polycyclic aromatic hydrocarbons(PAHs), phenols(Phs), polysaccharides(Ps), and sulfur-containing compounds(Sc). On average, Phs moieties accounted for roughly 24.11% peak areas of the total pyrolysis products, followed by Lg(19.27%), alkyl(18.96%), other aliphatics(12.39%), Nc compounds(8.08%), Ps(6.49%), aromatics(6.32%), Sc(3.26%), and PAHs(1.12%). Soil organic matter from wetlands had more Phs and Lg and less Nc moieties in pyrolytic products than soil organic matters from forests, lake sediments, pastures, and farmland.δ^13 C distribution patterns implied more C3 plant-derived soil organic matter, but the vegetation was in succession to C4 plant from C3 plant. Significant negative correlations between Lg or Ps proportions and C3 plant proportions were observed. Multiple linear analyses implied that the Ar and Al components had negative effects on SOC. Alkyl and Ar could facilitate ratios between SOC and total nitrogen(C/N), while Al plays the opposite role. Al was positively related to the ratio of dissolved organic carb