短文本具有特征维度高且稀疏等特点,导致将传统的分类方法应用于短文本分类时效果较差。针对此问题,提出基于频繁项特征扩展的短文本分类方法(Short Text Classification Based on Frequent Item Feature Extension,STCFIFE)。首先通过F...短文本具有特征维度高且稀疏等特点,导致将传统的分类方法应用于短文本分类时效果较差。针对此问题,提出基于频繁项特征扩展的短文本分类方法(Short Text Classification Based on Frequent Item Feature Extension,STCFIFE)。首先通过FP-growth算法挖掘背景语料库的频繁项集,结合上下文的关联特征,计算出扩展特征权重;然后将新特征加入到原短文本的特征空间中,在此基础上训练SVM(Support Vector Machine,SVM)分类器,并进行分类。实验结果表明,与传统的SVM算法和LDA+KNN算法相比,STCFIFE方法能有效缓解短文本特征不足、高维稀疏的问题,使F 1值提升了2%~10%,提高了短文本的分类效果。展开更多
针对并行MRPrePost(parallel prepost algorithm based on MapReduce)频繁项集挖掘算法在大数据环境存在运行时间长、内存占用量大和节点负载不均衡的问题,提出一种基于DiffNodeset的并行频繁项集挖掘算法(parallel frequent itemsets m...针对并行MRPrePost(parallel prepost algorithm based on MapReduce)频繁项集挖掘算法在大数据环境存在运行时间长、内存占用量大和节点负载不均衡的问题,提出一种基于DiffNodeset的并行频繁项集挖掘算法(parallel frequent itemsets mining using DiffNodeset,PFIMD)。该算法首先采用一种数据结构DiffNodeset,有效地避免了N-list基数过大的问题;此外提出一种双向比较策略(2-way comparison strategy,T-wcs),以减少两个DiffNodeset在连接过程中的无效计算,极大地降低了算法时间复杂度;最后考虑到集群负载对并行算法效率的影响,进一步提出了一种基于动态分组的负载均衡策略(load balancing strategy based on dynamic grouping,LBSBDG),该策略通过将频繁1项集F-list中的每项进行均匀分组,降低了集群中每个计算节点上PPC-Tree树的规模,进而减少了先序后序遍历PPC-Tree树所需的时间。实验结果表明,该算法在大数据环境下进行频繁项集挖掘具有较好的效果。展开更多
文摘短文本具有特征维度高且稀疏等特点,导致将传统的分类方法应用于短文本分类时效果较差。针对此问题,提出基于频繁项特征扩展的短文本分类方法(Short Text Classification Based on Frequent Item Feature Extension,STCFIFE)。首先通过FP-growth算法挖掘背景语料库的频繁项集,结合上下文的关联特征,计算出扩展特征权重;然后将新特征加入到原短文本的特征空间中,在此基础上训练SVM(Support Vector Machine,SVM)分类器,并进行分类。实验结果表明,与传统的SVM算法和LDA+KNN算法相比,STCFIFE方法能有效缓解短文本特征不足、高维稀疏的问题,使F 1值提升了2%~10%,提高了短文本的分类效果。
文摘针对并行MRPrePost(parallel prepost algorithm based on MapReduce)频繁项集挖掘算法在大数据环境存在运行时间长、内存占用量大和节点负载不均衡的问题,提出一种基于DiffNodeset的并行频繁项集挖掘算法(parallel frequent itemsets mining using DiffNodeset,PFIMD)。该算法首先采用一种数据结构DiffNodeset,有效地避免了N-list基数过大的问题;此外提出一种双向比较策略(2-way comparison strategy,T-wcs),以减少两个DiffNodeset在连接过程中的无效计算,极大地降低了算法时间复杂度;最后考虑到集群负载对并行算法效率的影响,进一步提出了一种基于动态分组的负载均衡策略(load balancing strategy based on dynamic grouping,LBSBDG),该策略通过将频繁1项集F-list中的每项进行均匀分组,降低了集群中每个计算节点上PPC-Tree树的规模,进而减少了先序后序遍历PPC-Tree树所需的时间。实验结果表明,该算法在大数据环境下进行频繁项集挖掘具有较好的效果。