Auxiliary frequency control of a wind turbine generator(WTG) has been widely used to enhance the frequencysecurity of power systems with high penetration of renewableenergy. Previous studies recommend two types of con...Auxiliary frequency control of a wind turbine generator(WTG) has been widely used to enhance the frequencysecurity of power systems with high penetration of renewableenergy. Previous studies recommend two types of control schemes,including frequency droop control and emulated inertia control,which simulate the response characteristics of the synchronousgenerator (SG). This paper plans to further explore the optimalauxiliary frequency control of the wind turbine based on previousresearch. First, it is determined that the virtual inertia control haslittle effect on the maximum rate of change of frequency (MaxROCOF)if the time delay of the control link of WTG is taken intoconsideration. Secondly, if a WTG operates in maximum powerpoint tracking (MPPT) mode and uses the rotor deceleration forfrequency modulation, its optimal auxiliary frequency control willcontain only droop control. Furthermore, if the droop control isproperly delayed, better system frequency response (SFR) willbe obtained. The reason is that coordination between the WTGand SG is important for SFR when the frequency modulationcapability of the WTG is limited. The frequency modulationcapability of the WTG is required to be released more properly.Therefore, when designing optimal auxiliary frequency controlfor the WTG, a better control scheme is worth further study.展开更多
针对含大规模风电的电力系统在大停电后负荷恢复阶段的频率安全问题,考虑风电机组的虚拟惯量和一次调频响应过程,基于系统等值摇摆方程构建含风电电力系统动态频率响应模型,推导出初始频率变化率(rate of change of frequency,RoCoF)和...针对含大规模风电的电力系统在大停电后负荷恢复阶段的频率安全问题,考虑风电机组的虚拟惯量和一次调频响应过程,基于系统等值摇摆方程构建含风电电力系统动态频率响应模型,推导出初始频率变化率(rate of change of frequency,RoCoF)和最低点频率的解析表达式,并将其作为系统动态频率安全约束;在此基础上,以恢复负荷量最大和恢复时间最短为目标,提出考虑动态频率安全约束的系统多时段恢复优化调度模型,并给出非线性约束的线性化方法,以提高恢复决策的效率;以改进的IEEE-39节点系统进行算例验证,结果表明所提模型能够给出保证频率动态安全的风电、负荷的有序接入及常规机组出力方案,且恢复速度快。展开更多
基金the National Natural Science Foundation of China(51922061)the Science and Technology Project of State Grid Corporation of China(SGZJ0000KXJS1900418).
文摘Auxiliary frequency control of a wind turbine generator(WTG) has been widely used to enhance the frequencysecurity of power systems with high penetration of renewableenergy. Previous studies recommend two types of control schemes,including frequency droop control and emulated inertia control,which simulate the response characteristics of the synchronousgenerator (SG). This paper plans to further explore the optimalauxiliary frequency control of the wind turbine based on previousresearch. First, it is determined that the virtual inertia control haslittle effect on the maximum rate of change of frequency (MaxROCOF)if the time delay of the control link of WTG is taken intoconsideration. Secondly, if a WTG operates in maximum powerpoint tracking (MPPT) mode and uses the rotor deceleration forfrequency modulation, its optimal auxiliary frequency control willcontain only droop control. Furthermore, if the droop control isproperly delayed, better system frequency response (SFR) willbe obtained. The reason is that coordination between the WTGand SG is important for SFR when the frequency modulationcapability of the WTG is limited. The frequency modulationcapability of the WTG is required to be released more properly.Therefore, when designing optimal auxiliary frequency controlfor the WTG, a better control scheme is worth further study.
文摘针对含大规模风电的电力系统在大停电后负荷恢复阶段的频率安全问题,考虑风电机组的虚拟惯量和一次调频响应过程,基于系统等值摇摆方程构建含风电电力系统动态频率响应模型,推导出初始频率变化率(rate of change of frequency,RoCoF)和最低点频率的解析表达式,并将其作为系统动态频率安全约束;在此基础上,以恢复负荷量最大和恢复时间最短为目标,提出考虑动态频率安全约束的系统多时段恢复优化调度模型,并给出非线性约束的线性化方法,以提高恢复决策的效率;以改进的IEEE-39节点系统进行算例验证,结果表明所提模型能够给出保证频率动态安全的风电、负荷的有序接入及常规机组出力方案,且恢复速度快。