为提高在低信噪比与先验信息不足条件下对线性调频(LFM)信号识别能力,借鉴信息论中的熵权法改进WHT(Wigner-Hough Transform),提出了一种基于切片熵权的WHTE(Wigner-Hough Transform based on Entropy)算法。推导出LFM信号的WHT与对应特...为提高在低信噪比与先验信息不足条件下对线性调频(LFM)信号识别能力,借鉴信息论中的熵权法改进WHT(Wigner-Hough Transform),提出了一种基于切片熵权的WHTE(Wigner-Hough Transform based on Entropy)算法。推导出LFM信号的WHT与对应特性,将WHT变换域内极半径和角度切片的熵值来转换为权重因子,进而对每个切片进行加权处理,采用双层权重以弱化噪声与干扰项的影响,并推导出LFM信号与高斯白噪声在WHT维度内不同假设条件下的概率密度分布函数,构建了对于LFM信号WHT后恒虚警检测的完备流程。通过理论分析与公式推导论证了算法的可行性,并与WHT、分数阶傅里叶变换与周期WHT算法的仿真对比,验证了算法的有效性,凸显WHTE算法能够在强噪声背景下与没有先验支撑时实现对LFM信号的良好检测。展开更多
文摘为提高在低信噪比与先验信息不足条件下对线性调频(LFM)信号识别能力,借鉴信息论中的熵权法改进WHT(Wigner-Hough Transform),提出了一种基于切片熵权的WHTE(Wigner-Hough Transform based on Entropy)算法。推导出LFM信号的WHT与对应特性,将WHT变换域内极半径和角度切片的熵值来转换为权重因子,进而对每个切片进行加权处理,采用双层权重以弱化噪声与干扰项的影响,并推导出LFM信号与高斯白噪声在WHT维度内不同假设条件下的概率密度分布函数,构建了对于LFM信号WHT后恒虚警检测的完备流程。通过理论分析与公式推导论证了算法的可行性,并与WHT、分数阶傅里叶变换与周期WHT算法的仿真对比,验证了算法的有效性,凸显WHTE算法能够在强噪声背景下与没有先验支撑时实现对LFM信号的良好检测。