针对最小均方误差准则下(Minimum Mean Square Error,MMSE)判决反馈信道估计算法在多输入多输出正交频分复用(Multiple-input Multiple-output Orthogonal Frequency Division Multiplexing,MIMO-OFDM)低信噪比水声通信环境下存在误码...针对最小均方误差准则下(Minimum Mean Square Error,MMSE)判决反馈信道估计算法在多输入多输出正交频分复用(Multiple-input Multiple-output Orthogonal Frequency Division Multiplexing,MIMO-OFDM)低信噪比水声通信环境下存在误码遗传缺陷,提出了一种基于压缩感知理论的改进的MMSE判决反馈信道估计算法。通过结合浅海水声信道的稀疏性特点,利用编码校验后的信息与原始信息实现了对信道估计的判决反馈更新,采用匹配追踪算法改进MMSE判决反馈追踪信道估计技术,实现了抑制传统判决反馈信道估计算法在迭代更新及传递过程中存在的误码遗传的目的。仿真和水池实验结果证实:改进的MMSE判决反馈追踪信道估计算法不仅可以有效的抑制误码遗传,对抗突发噪声,跟踪信道的缓慢时变,同时大幅降低了导频占用率,提高了通信质量。展开更多
Orthogonal frequency division multiplexing (OFDM) waveform enables radar and communication functions simultaneously, which encounters low angle resolution and poor data rate for traditional single input single output ...Orthogonal frequency division multiplexing (OFDM) waveform enables radar and communication functions simultaneously, which encounters low angle resolution and poor data rate for traditional single input single output (SISO) systems. To solve these problems, an integrated radar and communication system (IRCS) with multiple input multiple output (MIMO) OFDM waveform is proposed. The different limitations of radar and communication in designing such a system are investigated. Then, an optimization problem is devised to obtain suitable system parameters, including the number of subcarriers, subcarrier spacing, number of symbols, pulse repetition frequency (PRF) and length of cyclic prefix (CP). Finally, to satisfy the requirements of both radar and communication, the IRCS parameters are derived in three typical cases. Several numerical results are presented to illustrate the demands of radar and communication, inconsistent or consistent, for the IRCS parameters and the superiority of the proposed system.展开更多
相位敏感光时域反射计(Phase-sensitive Optical Time Domain Reflectometer,Φ-OTDR)是一种新型的分布式光纤传感技术,在周界安防入侵和建筑结构健康监测等领域具有广泛应用.针对Φ-OTDR的传感原理,根据其系统结构及信号处理,总结了Φ-...相位敏感光时域反射计(Phase-sensitive Optical Time Domain Reflectometer,Φ-OTDR)是一种新型的分布式光纤传感技术,在周界安防入侵和建筑结构健康监测等领域具有广泛应用.针对Φ-OTDR的传感原理,根据其系统结构及信号处理,总结了Φ-OTDR系统在光源技术、传感头技术、探测技术、复用技术和信号处理技术方面的进展,并对其进行了简要分析.展开更多
针对水声信道多途信号引起的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)水声通信系统符号间干扰的问题,提出了无源时间反转均衡的方法,将发送的探测信号时间反转与OFDM信号做卷积,利用无源时间反转镜的时间聚焦原...针对水声信道多途信号引起的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)水声通信系统符号间干扰的问题,提出了无源时间反转均衡的方法,将发送的探测信号时间反转与OFDM信号做卷积,利用无源时间反转镜的时间聚焦原理减小信道多途带来的符号间干扰,在OFDM符号中不使用导频的情况下实现信道均衡,简化了均衡步骤并提高了OFDM符号频带利用率。分析比较了无源时反均衡方法与最小平方信道均衡在水声多途信道下的误码性能。仿真研究和湖上实验表明,无源时反信道均衡算法可以有效的减小多途信道对OFDM水声通信系统带来的影响。展开更多
We propose a novel iteration-free blind phase noise estimation scheme for coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. In the new algorithm, the cost function is selected as the sim...We propose a novel iteration-free blind phase noise estimation scheme for coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. In the new algorithm, the cost function is selected as the similar expression with real and imaginary parts as that in the modified constant modulus algorithm, and the new cost function is derived under some assumptions, where it is infinitely approximated by the sine and cosine functions. By means of the analytical formula of the cost function, the initial coarse common phase error can be obtained with only some samples, where the algorithm avoids computational complexity of conventional blind phase noise compensation scheme. In CO-OFDM systems with high-order modulation format (32 quadrature amplitude modulation) and narrow linewidth lasers, it is proved by the simulation results that the nhase noise can be effectively compensated with the proposed blind estimation method.展开更多
In visible light communication, orthogonal frequency division multiplexing (OFDM) is an effective approach to improve the system speed. However, the nonlinearity of the light-emitting diode (LED) suppresses the tr...In visible light communication, orthogonal frequency division multiplexing (OFDM) is an effective approach to improve the system speed. However, the nonlinearity of the light-emitting diode (LED) suppresses the trans- mission performance. The low-frequency part of the transmitted signal from LED suffers more from nonlinearity. Therefore, a pre-equalization scheme which suppresses the low frequency part of the OFDM signal and enhances the high frequency part can decrease the impact of LED nonlinearity. The experimental results show that the bit-error rate performance is largely enhanced by the pre-compensation.展开更多
文摘针对最小均方误差准则下(Minimum Mean Square Error,MMSE)判决反馈信道估计算法在多输入多输出正交频分复用(Multiple-input Multiple-output Orthogonal Frequency Division Multiplexing,MIMO-OFDM)低信噪比水声通信环境下存在误码遗传缺陷,提出了一种基于压缩感知理论的改进的MMSE判决反馈信道估计算法。通过结合浅海水声信道的稀疏性特点,利用编码校验后的信息与原始信息实现了对信道估计的判决反馈更新,采用匹配追踪算法改进MMSE判决反馈追踪信道估计技术,实现了抑制传统判决反馈信道估计算法在迭代更新及传递过程中存在的误码遗传的目的。仿真和水池实验结果证实:改进的MMSE判决反馈追踪信道估计算法不仅可以有效的抑制误码遗传,对抗突发噪声,跟踪信道的缓慢时变,同时大幅降低了导频占用率,提高了通信质量。
基金supported by the National Natural Science Foundation of China(6123101761671352)
文摘Orthogonal frequency division multiplexing (OFDM) waveform enables radar and communication functions simultaneously, which encounters low angle resolution and poor data rate for traditional single input single output (SISO) systems. To solve these problems, an integrated radar and communication system (IRCS) with multiple input multiple output (MIMO) OFDM waveform is proposed. The different limitations of radar and communication in designing such a system are investigated. Then, an optimization problem is devised to obtain suitable system parameters, including the number of subcarriers, subcarrier spacing, number of symbols, pulse repetition frequency (PRF) and length of cyclic prefix (CP). Finally, to satisfy the requirements of both radar and communication, the IRCS parameters are derived in three typical cases. Several numerical results are presented to illustrate the demands of radar and communication, inconsistent or consistent, for the IRCS parameters and the superiority of the proposed system.
文摘相位敏感光时域反射计(Phase-sensitive Optical Time Domain Reflectometer,Φ-OTDR)是一种新型的分布式光纤传感技术,在周界安防入侵和建筑结构健康监测等领域具有广泛应用.针对Φ-OTDR的传感原理,根据其系统结构及信号处理,总结了Φ-OTDR系统在光源技术、传感头技术、探测技术、复用技术和信号处理技术方面的进展,并对其进行了简要分析.
文摘针对水声信道多途信号引起的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)水声通信系统符号间干扰的问题,提出了无源时间反转均衡的方法,将发送的探测信号时间反转与OFDM信号做卷积,利用无源时间反转镜的时间聚焦原理减小信道多途带来的符号间干扰,在OFDM符号中不使用导频的情况下实现信道均衡,简化了均衡步骤并提高了OFDM符号频带利用率。分析比较了无源时反均衡方法与最小平方信道均衡在水声多途信道下的误码性能。仿真研究和湖上实验表明,无源时反信道均衡算法可以有效的减小多途信道对OFDM水声通信系统带来的影响。
基金supported in part by the China Postdoctoral Science Foundation(No.2013M540361)the National Natural Science Foundation of China(Nos.60907032 and 61275124)+1 种基金the Natural Science Foundation of Zhejiang Province(No.LY13F010011)the Zhejiang Youth Science Fund(No.LQ13F050005)
文摘We propose a novel iteration-free blind phase noise estimation scheme for coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. In the new algorithm, the cost function is selected as the similar expression with real and imaginary parts as that in the modified constant modulus algorithm, and the new cost function is derived under some assumptions, where it is infinitely approximated by the sine and cosine functions. By means of the analytical formula of the cost function, the initial coarse common phase error can be obtained with only some samples, where the algorithm avoids computational complexity of conventional blind phase noise compensation scheme. In CO-OFDM systems with high-order modulation format (32 quadrature amplitude modulation) and narrow linewidth lasers, it is proved by the simulation results that the nhase noise can be effectively compensated with the proposed blind estimation method.
基金supported in part by the National 973 Program of China(No.2013CB329205)the National Natural Science Foundation of China(No.61401032)the National 863 Program of China(No.2013AA013601)
文摘In visible light communication, orthogonal frequency division multiplexing (OFDM) is an effective approach to improve the system speed. However, the nonlinearity of the light-emitting diode (LED) suppresses the trans- mission performance. The low-frequency part of the transmitted signal from LED suffers more from nonlinearity. Therefore, a pre-equalization scheme which suppresses the low frequency part of the OFDM signal and enhances the high frequency part can decrease the impact of LED nonlinearity. The experimental results show that the bit-error rate performance is largely enhanced by the pre-compensation.