为探讨沙漠沙(又名风积沙)替代河砂对低温环境下混凝土的耐久性能影响,按照风积沙替代河砂质量的20%、40%、60%、80%、100%共设计了5种强度等级为C25的风积沙混凝土(aeolian sand concrete,ASC)。采用加速试验方法研究了风积沙混凝土在...为探讨沙漠沙(又名风积沙)替代河砂对低温环境下混凝土的耐久性能影响,按照风积沙替代河砂质量的20%、40%、60%、80%、100%共设计了5种强度等级为C25的风积沙混凝土(aeolian sand concrete,ASC)。采用加速试验方法研究了风积沙混凝土在冻融条件下的损伤失效规律,借助环境电镜扫描(environmental scanning electron microscope,ESEM)、应变监测和核磁共振(nuclear magnetic resonance,NMR)等测试手段得到了风积沙混凝土的损伤机理。研究发现风积沙掺量80%以上的混凝土冻融次数超过200次,冻融损伤残余应变小,内部封闭小孔隙数量多对冻融损伤的抑制阻碍作用增强。结果表明风积沙混凝土的抗冻性能随着风积沙掺量的增加而提高,掺量为100%的风积沙混凝土的抗冻性最好。该研究可为风积沙混凝土大范围应用于寒区渠道衬砌及水利设施建设提供理论依据。展开更多
As a frequently-used roadbed filler,soil-rock mixture is often in the environment of freeze-thaw cycles and different confining pressures.In order to study the freeze-thaw damage mechanism of elastic modulus of soil-r...As a frequently-used roadbed filler,soil-rock mixture is often in the environment of freeze-thaw cycles and different confining pressures.In order to study the freeze-thaw damage mechanism of elastic modulus of soil-rock mixtures at different confining pressures,the concept of meso-interfacial freeze-thaw damage coefficient is put forward and the meso-interfacial damage phenomenon of soil-rock mixtures caused by the freeze-thaw cycle environment is concerned;a double-inclusion embedded model for elastic modulus of soil-rock mixtures in freezing-thawing cycle is proposed.A large triaxial test was performed and the influences of confining pressure and experimental factors on elastic modulus of soil-rock mixtures were obtained,and then the accuracy of the double-inclusion embedded model to predict the elastic modulus of soil-rock mixtures in freezing-thawing cycle is verified.Experiment results showed that as to soil-rock mixtures,with the increase of confining pressure,the elastic modulus increases approximately linearly.The most crucial factors to affect the elastic modulus are rock content and compaction degree at the same confining pressure;the elastic modulus increases with the increase of rock content and compactness;as the number of freeze-thaw cycles increases,the freeze-thaw damage coefficient of meso-structural interface and the elastic modulus decrease.展开更多
We design a weather-based indemnity index for the insurance against freeze damage to citrus orchards so as to provide technological support for the development of policy-based agriculture. The indices are prepared by ...We design a weather-based indemnity index for the insurance against freeze damage to citrus orchards so as to provide technological support for the development of policy-based agriculture. The indices are prepared by separating a relative meteorological yield from the yield that is dependent on tree age, high-yield and low-yield years, and environmental factors, and then using a risk assessment scheme to determine the percentage yield reduction due to the meteorological hazard. We thus develop a set of indices associated with cold temperature damage with which to construct more severe weather indices in conjunction with the yield percentage decrease. We then combine the insured regional citrus yield index with the insured meteorological counterpart to obtain a weather-based indemnity index for the varying degree of freeze damage to crops. When the freeze damage index (FDI) is greater than -7.0℃ for the coastal belt of Zhejiang Province, China, or greater than -9.0℃ for other regions of Zhejiang, weather-based indemnity index (WBII) is zero, meaning there is no compensation; when the FDI is from -7.0 to -7.9℃ for the coastal belt or from -9.0 to -9.9℃ for other regions, the WBII is 1 with 50% compensation; when the FDI is from -8.0 to -8.9℃ for the coastal belt or from -10.0 to -10.9℃ for other regions, the WBII is 2 with 70% compensation; and when the FDI is less than -9.0℃ for the coastal belt or less than -11.0℃ for other regions, the WBII is 3 with 90% compensation. The weather indemnity indices of insured orchards are developed in the interest of owners, thereby eliminating adverse selection and moral hazard issues and providing timely recompense from the insurer, and resolving the problem of high indemnity cost in agricultural insurance.展开更多
文摘为探讨沙漠沙(又名风积沙)替代河砂对低温环境下混凝土的耐久性能影响,按照风积沙替代河砂质量的20%、40%、60%、80%、100%共设计了5种强度等级为C25的风积沙混凝土(aeolian sand concrete,ASC)。采用加速试验方法研究了风积沙混凝土在冻融条件下的损伤失效规律,借助环境电镜扫描(environmental scanning electron microscope,ESEM)、应变监测和核磁共振(nuclear magnetic resonance,NMR)等测试手段得到了风积沙混凝土的损伤机理。研究发现风积沙掺量80%以上的混凝土冻融次数超过200次,冻融损伤残余应变小,内部封闭小孔隙数量多对冻融损伤的抑制阻碍作用增强。结果表明风积沙混凝土的抗冻性能随着风积沙掺量的增加而提高,掺量为100%的风积沙混凝土的抗冻性最好。该研究可为风积沙混凝土大范围应用于寒区渠道衬砌及水利设施建设提供理论依据。
基金Project(50908234)supported by the National Natural Science Foundation of China
文摘As a frequently-used roadbed filler,soil-rock mixture is often in the environment of freeze-thaw cycles and different confining pressures.In order to study the freeze-thaw damage mechanism of elastic modulus of soil-rock mixtures at different confining pressures,the concept of meso-interfacial freeze-thaw damage coefficient is put forward and the meso-interfacial damage phenomenon of soil-rock mixtures caused by the freeze-thaw cycle environment is concerned;a double-inclusion embedded model for elastic modulus of soil-rock mixtures in freezing-thawing cycle is proposed.A large triaxial test was performed and the influences of confining pressure and experimental factors on elastic modulus of soil-rock mixtures were obtained,and then the accuracy of the double-inclusion embedded model to predict the elastic modulus of soil-rock mixtures in freezing-thawing cycle is verified.Experiment results showed that as to soil-rock mixtures,with the increase of confining pressure,the elastic modulus increases approximately linearly.The most crucial factors to affect the elastic modulus are rock content and compaction degree at the same confining pressure;the elastic modulus increases with the increase of rock content and compactness;as the number of freeze-thaw cycles increases,the freeze-thaw damage coefficient of meso-structural interface and the elastic modulus decrease.
基金supported by the National Natural Science Foundation of China (30370914)the major projects of Zhejiang Province Weather Bureau,China(2006zd005)
文摘We design a weather-based indemnity index for the insurance against freeze damage to citrus orchards so as to provide technological support for the development of policy-based agriculture. The indices are prepared by separating a relative meteorological yield from the yield that is dependent on tree age, high-yield and low-yield years, and environmental factors, and then using a risk assessment scheme to determine the percentage yield reduction due to the meteorological hazard. We thus develop a set of indices associated with cold temperature damage with which to construct more severe weather indices in conjunction with the yield percentage decrease. We then combine the insured regional citrus yield index with the insured meteorological counterpart to obtain a weather-based indemnity index for the varying degree of freeze damage to crops. When the freeze damage index (FDI) is greater than -7.0℃ for the coastal belt of Zhejiang Province, China, or greater than -9.0℃ for other regions of Zhejiang, weather-based indemnity index (WBII) is zero, meaning there is no compensation; when the FDI is from -7.0 to -7.9℃ for the coastal belt or from -9.0 to -9.9℃ for other regions, the WBII is 1 with 50% compensation; when the FDI is from -8.0 to -8.9℃ for the coastal belt or from -10.0 to -10.9℃ for other regions, the WBII is 2 with 70% compensation; and when the FDI is less than -9.0℃ for the coastal belt or less than -11.0℃ for other regions, the WBII is 3 with 90% compensation. The weather indemnity indices of insured orchards are developed in the interest of owners, thereby eliminating adverse selection and moral hazard issues and providing timely recompense from the insurer, and resolving the problem of high indemnity cost in agricultural insurance.